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Abstract. Visual categorization is important to manage large collections of dig-
ital images and video, where textual meta-data is often incomplete or simply un-
available. The bag-of-words model has become the most powerful method for
visual categorization of images and video. Despite its high accuracy, a severe
drawback of this model is its high computational cost. As the trend to increase
computational power in newer CPU and GPU architectures is to increase their
level of parallelism, exploiting this parallelism becomes an important direction
to handle the computational cost of the bag-of-words approach. In this paper,
we analyze the bag-of-words model for visual categorization in terms of com-
putational cost and identify two major bottlenecks: the quantization step and the
classification step. We address these two bottlenecks by proposing two efficient
algorithms for quantization and classification by exploiting the GPU hardware
and the CUDA parallel programming model. The algorithms are designed to keep
categorization accuracy intact and give the same numerical results.
In the experiments on large scale datasets it is shown that, by using a parallel
implementation on the GPU, quantization is 28 times faster and classification
is 35 faster than a single-threaded CPU version, while giving the exact same
numerical results. The GPU accelerations are applicable to both the learning
phase and the testing phase of visual categorization systems. For software visit
http://www.colordescriptors.com/. 1

1 Introduction

Visual categorization aims to determine whether objects or scene types are visually
present in images or video segments. This is a useful prerequisite to manage large col-
lections of digital images and video, where textual meta-data is often incomplete or
simply unavailable [2]. Letting humans annotate such meta-data is expensive and infea-
sible for large datasets. While automatic visual categorization is not yet as accurate as
a human annotation, it is a useful tool to manage large collections. The bag-of-words
model [3] has become the most powerful method today for visual categorization [4–11].
The bag-of-words model computes image descriptors at specific points in the image.
These descriptors are then quantized against a codebook of prototypical descriptors to
obtain a fixed-length representation of an image. Although the bag-of-words model is

1 Since the workshop, an extended version of this paper has been accepted for publication in
IEEE Transactions on Multimedia [1].
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a powerful mechanism for accurate visual categorization, a severe drawback is its high
computational cost. Current state-of-the-art in visual categorization benchmarks such
as TRECVID 2009 [12] require weeks of compute time on compute clusters to process
380 hours of video. However, even with weeks of compute time, most systems are still
only able to process a limited subset of about 250,000 frames. In the future, more and
more data needs to be processed as datasets continue to grow. To address the problem
of computation, the two directions are faster approximate methods and larger compute
clusters. Faster to compute descriptors (such as SURF [13, 14]) and indexing mecha-
nisms (tree-based codebooks [15, 16]) have been developed. Another direction is to use
large compute clusters with many CPUs [10, 11] to solve the computational problem
using brute force. However, both directions have their drawbacks. Faster methods will
(1) suffer from reduced accuracy when they resort to increasingly coarse approxima-
tions and (2) suffer from increased complexity in the form of additional parameters and
thresholds to control the approximations, all of which need to be hand-tuned. Brute
force solutions based on compute clusters have the problem that (1) compute clusters
are available in limited supply and (2) are expensive.

Recently, another direction for acceleration has opened up: computing on consumer
graphics hardware. Cornelis and Van Gool [17] have implemented SURF on the GPU
(Graphics Processing Unit) and obtained an order of magnitude speedup compared to
a CPU implementation. These GPU implementations [17, 18] build on the trend of
increased parallelism. Whereas commodity CPUs currently have up to 4 cores, com-
modity GPUs have hundreds of cores at their disposal [19]. Together, the increased
programmability and computational power of GPUs provides ample opportunities for
acceleration of algorithms which can be parallelized [19]. Compared to faster approxi-
mate methods, algorithms for the GPU do not need to approximate for speedups, if they
are able to exploit the parallel nature of the GPU. Compared to compute clusters, the
main advantages of the GPU are their wide availability and their potential to be more
energy-efficient.

When optimizing a system based on the bag-of-words model, the goal is to min-
imize the time it takes to process batches of images. Individual components of the
bag-of-words model, such as the point sampling strategy, descriptor computation and
SVM model training, have been independently studied on the GPU before [17, 20, 21].
These studies accelerate specific algorithms with the GPU. However, it remains unclear
whether those algorithms are the real bottlenecks in accurate visual categorization with
the bag-of-words model. In our overview of related work on visual categorization with
the GPU, we observe that quantization and classification have remained CPU-bound so
far, despite being computationally very expensive. Therefore, in this paper, the goal is
to combine GPU hardware and a parallel programming model to accelerate the quanti-
zation and classification components of a visual categorization architecture. Two algo-
rithms are proposed to accelerate these two components. The algorithms are designed
to keep categorization accuracy intact and give the same numerical results.
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2 Overview of Visual Categorization

The aim of this paper is to speed up state-of-the-art visual categorization systems us-
ing GPUs. In visual categorization [22], the visual presence of an object or scene of
specified type is determined. In Figure 1, an overview of the components of a visual
categorization system is shown. A trained visual categorization system takes an image
as input and returns the likelihood that one or more visual categories are present in the
image. Visual categorization systems break down into a number of common steps:

– Image Feature Extraction, which takes an image as input and outputs a fixed-length
feature vector representing the image.

– Category Model Learning, learns one model per visual category by taking all vector
representations of images from the train set and the category labels associated with
those images.

– Test Image Classification, which takes vector representations of images from the
test set and applies the visual category models to these images. The output of this
step is a likelihood score for each image and each visual category.
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Fig. 1. The components of a state-of-the-art visual categorization system. For all images in both
the train set and the test set, visual features are extracted in a number of steps. First, a point
sampling method is applied to the image. Then, for every point a descriptor is computed over the
area around the point. All the descriptors of an image are subsequently vector quantized against a
codebook of prototypical descriptors. This results in a fixed-length feature vector representing the
image. Next, the visual categorization system is trained based on the feature vectors of all training
images and their category labels. To learn kernel-based classifiers, similarities between training
images are needed. These similarities are computed using a kernel function. To apply a trained
model to test images, the kernel function values are also needed. Given these values between a test
image and the images in the train set, the category models are applied and category likelihoods
are obtained.
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2.1 Image Feature Extraction

Visual categorization systems which achieve state-of-the-art results on the PASCAL
VOC benchmarks [5, 6, 9] use the bag-of-words model [3] as the underlying represen-
tation model. This model first extracts specific points in an image using a point sampling
strategy. Over the area around these points, descriptors are computed which represent
the local area. The bag-of-words model performs vector quantization of the descriptors
in an image against a visual codebook. A descriptor is assigned to the codebook ele-
ment which is closest in Euclidean space. Figure 1 gives an overview of the steps for the
bag-of-words model in the image feature extraction blocks. In Table 1, the computation
times of different steps within the bag-of-words model are listed. For every step, multi-
ple options are available. Next, we will discuss these options, their presence in related
work and their computation times on the CPU and GPU.

Table 1. Computation times of different steps within the bag-of-words model on both the CPU
and the GPU. For every step, multiple choices are available. CPU times obtained on AMD
Opteron 250 @ 2.4GHz. GPU times obtained from the literature. One of the contributions of
this paper is substantially accelerating the vector quantization step using the GPU.

Image Feature Extraction Times (s)
CPU GPU

1) Point Sampling Strategy
• Dense Sampling < 0.01 < 0.01
• Difference-of-Gaussians 1.4 [23] < 0.1 [17]
• Harris-Laplace 4.4 [24] < 0.5 [25]

2) Descriptors
• SIFT 1.4 [23] < 0.1 [18]
• SURF < 1.0 [13] < 0.01 [17]
• ColorSIFT 4.0 [6] < 0.3 [18]

3) Bag-of-Words
• Tree-based Codebook < 0.5 [15, 16] < 0.01 [20]
• Vector Quantization 5.0 [3] < 0.1 this paper

Point Sampling Strategy As a point sampling strategy, there are two commonly used
techniques in state-of-the-art systems [6, 9]: dense sampling and salient point methods.
Dense sampling samples points regularly over the image at fixed pixel intervals. As it
does not depend on the image contents, it is a trivial operation to perform. Typically,
around 10,000 points are sampled per image. Two examples of salient point methods
are the Harris-Laplace salient point detector [24] and the Difference-of-Gaussians de-
tector [23]. See Table 1 for computation times of these point sampling strategies. The
Harris-Laplace detector uses the Harris corner detector to find scale-invariant interest
points. It then selects a subset of these points for which the Laplacian-of-Gaussians
reaches a maximum over scale. Using recursive Gaussian filters [25], the computation
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of Gaussian derivatives at multiple scale required for these steps is possible at a rate
of multiple images per second: computational complexity of recursive Gaussian filters
is independent of the scale. As has been shown by Cornelis and Van Gool [17], run-
ning the Difference-of-Gaussians detector is possible in real-time, using a scale-space
pyramid to limit computational complexity.

Descriptor Computation To describe the area around the sampled points, the SIFT
descriptor [23] and the SURF descriptor [13] are the most popular choices. Sinha et al.
[18] compute SIFT descriptors at 10 frames per second for 640x480 images. Cornelis
and Van Gool [17] compute SURF descriptors at 100 frames per second for 640x480
images. Both of these papers show that descriptor computation runs with excellent per-
formance on the GPU, because one thread can be assigned per pixel or per descrip-
tor, and thereby performing operations in parallel. The standard SIFT descriptor has
a length of 128. Following Everingham et al. [5], color extensions of SIFT [6] would
form a reasonable state-of-the-art baseline for future VOC challenges, due to their in-
creased classification accuracy. ColorSIFT increases the descriptor length to 384 and
the required computation time is also tripled.

Bag-of-Words Vector quantization is computationally the most expensive part of the
bag-of-words model. With n descriptors of length d in an image, the quantization
against a codebook with m elements requires the full (n×m) distance matrix between
all descriptors and codebook elements. For values which are common for visual catego-
rization, n = 10, 000, d = 128 and codebook size m = 4, 000, a CPU implementation
takes approximately 5 seconds per image, as the complexity is O(ndm) per image.
When d increases to 384, as is the case for ColorSIFT, the CPU implementation slows
down to more than 10 seconds per image, which makes this a computational bottleneck.

One approach to address this bottleneck is to index using a tree-based codebook
structure [14–16], instead of a standard codebook. A tree-based codebook replaces
the comparison of each descriptor with all m codebook elements by a comparison
against log(m) codebook elements. As a result, algorithmic complexity is reduced
to O(nd log(m)). Tree-based methods have been shown to run in real-time on the
GPU [20]. However, for a tree-based codebook generally the accuracy is lower [14],
especially for high-dimensional descriptors such as ColorSIFT. Therefore, tree-based
codebooks conflict with our goal of keeping accuracy intact. The same argument applies
to other indexing structures such as miniBOF (mini bag-of-features) [26]: accuracy is
sacrificed in return for faster computation. Another drawback of tree-based codebooks
and miniBOFs is that soft assignment [7, 27], which improves accuracy by 5% by as-
signing weight to more than just the closest codebook element, requires the full distance
matrix instead of only the closest elements. These methods are unable to provide this
matrix. Therefore, this paper studies how to accelerate the vector quantization step us-
ing normal codebooks on the GPU, as the same accelerations are then also applicable
to soft assignment.

In conclusion, in a state-of-the-art setup of the bag-of-words model, the most ex-
pensive part is the vector quantization step. Approximate methods are unable to satisfy
our requirement to maintain accuracy.
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2.2 Category Model Learning

To learn visual category models, supervised kernel-based learning algorithms such as
Support Vector Machines (SVM) and Spectral Regression Kernel Discriminant Analy-
sis [28] have shown good results [4, 6]. Key property of a kernel-based classifier is that
it does not require the actual vector representation of the feature vector F , but only a
kernel function k(F ,F ′) which is related to the distance between the feature vectors.
This is sometimes referred to as the ‘kernel trick’. It has been shown experimentally [4]
that the non-linear χ2 kernel function is the best choice [6, 9] for accurate visual cat-
egorization. While typical implementations compute the values of this kernel function
on-the-fly and only keep a cache of the most recent evaluations, it is more efficient to
compute all values in advance and store them, because then the values can be re-used
for every parameter setting and for every visual category. The total number of kernel
values to be computed in advance is the number of pair-wise distances between all train-
ing images, e.g. , it is quadratic with respect to the number of images. The benefit of
precomputing kernel values is illustrated in Table 2.

Table 2. Computation times of the different steps in visual categorization. The times listed are
for an image dataset (PASCAL VOC 2008), which has a training set of size 4332 and test set
of size 4133. Classification times are totals for all 20 visual categories. CPU times obtained on
AMD Opteron 250 @ 2.4GHz. This paper substantially accelerates the precomputation of kernel
values (shown in bold) using the GPU.

Category Model Learning Times (s)
CPU GPU

Category Model Learning (without precomputed)
Parameter Tuning (length F = 4, 000) > 1, 000, 000 [29] > 10, 000 [21]
Train Classifier (length F = 4, 000) > 100, 000 [29] > 1, 000 [21]

Category Model Learning (with precomputed)
Precompute Kernel Values (length F = 4, 000) 660 9 this paper
Precompute Kernel Values (length F = 32, 000) 3,600 64 this paper
Precompute Kernel Values (length F = 320, 000) 36,000 650 this paper
Parameter Tuning 1,050 [29] 60 [21]
Train Classifier 240 [29] 10 [21]

Test Image Classification (with precomputed)
Precompute Kernel Values (length F = 4, 000) 600 8 this paper
Apply Classifier < 5 [29] < 1 [21]

The kernel-based SVM algorithm has been ported to the GPU by [21, 30]. In [30],
specific optimizations are made in the GPU version such that only linear kernel func-
tions are supported. For visual categorization, however, support for the more accurate
non-linear χ2 kernel function is needed to maintain accuracy. Catanzaro et al. [21] per-
form a selection of the training samples under consideration for SVM, resulting in a
speedup of up to 35 times for training models. Further speedups are possible if this
GPU-SVM implementation is combined with the precomputation of kernel values. The
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precomputation of kernel values itself has not been investigated yet. Therefore, in sec-
tion 3.3, we propose an algorithm to precompute the kernel values and investigate the
speedup possibilities offered by precomputing these values.

Table 2 gives an overview of computation times on the PASCAL VOC 2008 dataset
for different feature vector lengths, where the learning of visual category models is
split into a precomputation of kernel values and the actual model learning. Because the
ground truth labels of all images and their extracted features are needed before training
can start, it is an inherently offline process. When multiple features are used, more than
90% of computation time is spent on precomputing the kernel values. This makes it the
most expensive step in category model learning.

In conclusion, the learning of category models can be split into two steps, kernel
value computation and classifier training. The classifier training has been accelerated
with the GPU before, but the kernel value computation is the most expensive step. This
paper will study how to accelerate the computation of the kernel values on the GPU.

2.3 Test Image Classification

To classify images from a test set, feature extraction first has to be applied to the images,
similar to the train set. Therefore, speed-ups obtained in the image feature extraction
stage are useful for both the train set and the test set. To apply the visual category mod-
els, pair-wise kernel values between the feature vectors of the train set and those of the
test set are needed. Therefore, when accelerating the computation of kernel values, this
speedup will apply to both the training phase and the test phase of a visual categoriza-
tion system. This speedup is made possible by processing the test set in small batches,
instead of one image at a time. Timings in Table 2 show that for the test set, again, the
computation of kernel values takes up the most time.

In conclusion, the speedups obtained using GPU vector quantization and GPU pre-
computation of kernel values also directly apply to the classification of images/frames
from the test set.

3 GPU Accelerated Categorization

We start with discussing the CUDA programming model with an example of parallel
programming for the GPU in section 3.1. Next, we discuss the GPU-accelerated ver-
sions of vector quantization (section 3.2) and kernel value precomputation (section 3.3).
Both of these visual categorization steps take large numbers of vectors as input, and
therefore are ideally suited for the data parallelism offered by the GPU.

3.1 CUDA Programming Model

A CUDA program is organized into a normal C/C++ host program, running sequentially
on the host CPU, and one or more parallel procedures that are suitable for execution on
a parallel processing device like the GPU. A parallel procedure2 is a simple sequential

2 In the CUDA documentation, parallel procedures are called parallel kernels. In this paper, we
refer to them as parallel procedures to avoid using the word kernel in two different contexts.
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program which is executed simultaneously on a set of parallel threads. The programmer
organizes these threads into thread blocks. The threads within a thread block are allowed
to synchronize and support inter-thread communication through a high-speed shared
memory. Threads from different blocks coordinate only through global memory. CUDA
requires that thread blocks are independent, meaning that a parallel procedure must
execute correctly no matter the order in which blocks are run. This restriction on the
dependencies between blocks of a parallel procedure provides scalability.

Figure 2 shows a basic example of parallel programming with CUDA. The example
shows a common parallelization pattern, where a serial loop with independent itera-
tions is executed in parallel across many threads. The results of the various threads are
gathered through a parallel reduction [31], also known as the ‘butterfly pattern’. With a
parallel reduction, n elements are summed in log n steps.
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P
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(Fi−F ′
i )2
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i

for given vectors F and F ′ consisting of 4 floating point numbers. The serial version on the left
is a simple loop. The parallel procedure on the right executes independent iterations in parallel.

3.2 Algorithm 1: GPU-Accelerated Vector Quantization

In section 2.1, we have shown that vector quantization is computationally the most
expensive step in image feature extraction. Therefore, in this section, the GPU imple-
mentation of vector quantization for an image with n descriptors against a codebook of
m elements is proposed. The descriptor length is d. Quantization against a codebook
requires the full (n × m) distance matrix between all descriptors and codebook ele-
ments. A descriptor is then assigned to the column which has the lowest distance in a
row. By counting the number of minima occurring in each column, the vector quantized
representation of the image is obtained. To be robust against changes in the number of
descriptors in an image, these counts are divided by the number of descriptors n for the
final feature vector.
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The most expensive computational step in vector quantization is the calculation of
the distance matrix. Typically, the Euclidean distance is employed:

||a − b|| =
√

(a1 − b1)2 + (a2 − b2)2 + ... + (aq − bq)2. (1)

This formula for the Euclidean distance can be directly implemented on the GPU using
loops [32]. However, such a naive implementation is not very efficient, because the same
result is obtained with fewer operations by simply vectorizing the Euclidean distance.
This well-known trick [21] computes the Euclidean distance in vector form:

||a − b|| =
√
||a||2 + ||b||2 − 2a · b. (2)

The advantage of the vector form of the Euclidean distance is that it allows us to decom-
pose the computation of a distance matrix between sets of vectors into several smaller
steps which are faster to compute. The dot products a · b in (2) between sets of vectors
can be rewritten as a matrix multiplication: ABT contains all the dot products required
for the full distance matrix, with A the matrix with all image descriptors as rows and B
the matrix with all codebook elements as rows. Highly optimized BLAS linear algebra
libraries exist for both the CPU and the GPU which contain matrix multiplication. On
the CPU we use the ATLAS library, which we tune for every CPU architecture used.
Another key insight when implementing this operation is that the squared vector lengths
||a||2 and ||b||2 are used multiple times and can be cached. After the compute distance
matrix has been computed, assigning the descriptors to codebook elements is a matter
of finding the codebook element with the lowest distance to a descriptor, which is a
simple minimization over the rows of the distance matrix.

In conclusion, vector quantization involves computing the pair-wise Euclidean dis-
tances between n descriptors and m codebook elements. By simply vectorizing the
computation of the Euclidean distance, the computation can be decomposed into steps
which can be efficiently executed on the GPU.

3.3 Algorithm 2: GPU-Accelerated Kernel Value Precomputation

To compute kernel function values, we use the kernel function based on the χ2 distance,
which has shown the most accurate results in visual categorization (see section 2.2). Our
contribution is evaluating the χ2 kernel function on the GPU efficiently, even for very
large datasets which do not fit into memory. The χ2 distance between feature vectors F
and F ′ is:

distχ2(F ,F ′) =
1
2

s∑
i=1

(Fi − F ′
i )2

Fi + F ′
i

, (3)

with s the size of the feature vectors. For notational convenience, 0
0 is assumed to be

equal to 0 iff Fi = F ′
i = 0.

The kernel function based on this χ2 distance then is:

k(F ,F ′) = e−
1
D dist(F ,F ′), (4)
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where D is an optional scalar to normalizes the distances [4]. Because the χ2 distance
is already constrained to lie between 0 and 1, this normalization is unnecessary and we
therefore fix D to 1.

For vector quantization, discussed in the previous section, all input data and the
resulting output fits into computer memory. For kernel value precomputation, memory
usage is an important problem. For example, for a dataset with 50, 000 images, the input
data is 12 GB and the output data is 19 GB. Therefore, special care must be taken when
designing the implementation, to avoid holding all data in memory simultaneously. We
divide the processing into evenly sized chunks. Each chunk corresponds to a square
1024x1024 subblock of the kernel matrix with all kernel function values. Because the
final kernel function values only depend on the subset of feature vectors involved in
the chunk, the operations are performed for every chunk separately. For every feature
j, compute the χ2 distances D between the 1024 vectors F (j) and the 1024 vectors
F ′

(j). To compute the pair-wise distances between all these vectors, one thread block
is created per pair (e.g. 1024x1024 thread blocks): F is the first input and F ′ is the
second input to (3). The parallel procedure applied to every thread block to compute
distχ2(F ,F ′) follows the parallelization pattern shown in Fig 2: one thread is assigned
per data element. After the distances have been computed, they are divided by D and
their exponent with base e is taken (see (4)). Repeat this operation for all chunks and
the complete kernel matrix has been computed.

4 Experimental Setup

4.1 Experiment 1: Vector Quantization Speed
We measure the relative speed of two vector quantization implementations: CPU and
GPU versions of the vectorized approach from section 3.2. Measured times are the
median of 25 runs; an initial warm-up run is discarded to exclude initialization effects.
For the experiments, realistic data sizes are used, following the state-of-the-art [6]: a
codebook of size m = 4, 000; up to 20, 000 descriptors per image and descriptor lengths
of d = 128 (SIFT) and d = 384 (ColorSIFT). Because CPU architectures still improve
with every generation, we include multiple CPU architectures in our comparison of
CPU and GPU versions, to show the rate of development in CPU compute speeds.

4.2 Experiment 2: Kernel Value Precomputation Speed
To measure the speed of kernel value computation, we compare a CPU version and a
GPU version based on the approach from section 3.3. An alternative approach besides
the GPU would be to compute the kernel values on a compute cluster. Therefore, for
reference, we include an MPI version which can execute on such a cluster. We compare
the GPU version on the Geforce GTX275 to the single-threaded CPU version on the
Xeon X5570 and the Opteron 250. To demonstrate the execution speed relative to that
of a compute cluster, we also show results using 4, 16, 25, 36 and 49 Opteron CPUs. To
obtain timings results, we have chosen the large Mediamill Challenge training set of 30
993 frames [33] with realistic feature vector lengths: from a single feature (total feature
vector length 4, 000) up to 10 features (total feature vector length 128, 000). For a real
system, the number of features might be even higher [6, 10].
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Experiment 1: Vector Quantization Timings for SIFT/ColorSIFT

Fig. 3. Vector quantization speeds for a varying number of SIFT descriptors (on the left) or
ColorSIFT descriptors (on the right). Each line represents a different hardware configuration plus
appropriate implementation (CPU, GPU). The difference between the fastest single CPU core
and the GPU is a factor 28.

5 Results

5.1 Experiment 1: Vector Quantization Speed

Figure 3 shows the vector quantization speeds for SIFT descriptors using different hard-
ware platforms and implementations. From the results, it is shown that vector quanti-
zation on CPUs takes more time than on GPUs. The difference between the fastest
single-threaded CPU and the fastest GPU is a factor of 28; both are using a vectorized
implementation. An unvectorized GPU implementation is 6 times slower than a vector-
ized GPU implementation. For a typical number of SIFT descriptors per frame, 10,000,
this is the difference between 0.6s and 0.06s spent per image in vector quantization. In
the ColorSIFT results, we see the same speedup: from 1.2s to 0.13s. When processing
datasets of thousands or even millions of images, this is a crucial acceleration.

An interesting observation is that the CPU times can be used to roughly order them
by release date. The 2004 Xeon takes about 1.4 times longer than a 2006 Core 2 Duo
and 2.8 times longer than a 2009 Xeon X5570.

In conclusion, the speedup through parallelization obtained for vector quantization
is an important acceleration when processing large image datasets. When combined
with GPU versions of the other image feature extraction stages (see Table 1), even the
most expensive feature can still be extracted in less than 1 second per image. Without
GPU vector quantization, this would require an order of magnitude longer.

5.2 Experiment 2: Kernel Value Precomputation Speed

Figure 4 shows the kernel value precomputation speeds on different hardware platforms.
The difference between a single GTX275 and a single Opteron CPU is a factor 90! The
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Fig. 4. Timings of kernel value precompution on different hardware for various feature vector
lengths. The difference between a single GTX275 and a single Opteron CPU is a factor 90. The
difference between the more recent Xeon X5570 CPU and the GPU is a factor 35. Furthermore,
a single GPU outperforms a compute cluster with 49 Opteron CPUs by a factor of 2.

difference between the more recent Xeon X5570 CPU and the GPU is a factor 35. When
using a bag-of-words model with features computed for four spatial pyramid levels (a
total feature vector length of 120, 000), this is the difference between 2250 minutes and
170 minutes. Again, the GPU architecture results in a substantial acceleration.

When comparing the GPU implementation on a single Geforce GTX275 to the dis-
tributed CPU implementation, we see that a compute cluster with 49 Opteron CPUs is
still outperformed by the GPU with a factor 2. This implies that a medium-size compute
cluster is insufficient to beat a single GPU when precomputing kernel values. For large
datasets, consisting of tens of thousands of training images (e.g. , TRECVID 2009 [12],
Mediamill Challenge [33]), this allows the category learning step to be performed us-
ing a single machine, instead of using an expensive compute cluster. Alternatively, the
improved efficiency could be used to include more visual features (which implies even
longer feature vectors) or to process additional frames from a video.

6 Conclusions

This paper provides an efficiency analysis of a state-of-the-art visual categorization
pipeline based on the bag-of-words model. In this analysis, two large bottlenecks were
identified: the vector quantization step in the image feature extraction and the kernel
value computation in the category classification. By using a vectorized GPU imple-
mentation of vector quantization, it is 28 times faster than when it is computed on a
CPU. For the classification, we exploit the intrinsic property of kernel-based classifiers
that only kernel values are needed. By precomputing these kernel values, the parameter
tuning and model learning stages can reuse these values, instead of computing them on
the fly for every visual category and parameter setting. Also, computing these kernel
values on the GPU accelerates it by a factor of 35, while giving the exact same results
for visual categorization. The latter GPU acceleration is applicable to both the learning
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phase and the test phase. In the future, we will look at applying our GPU accelerations
to other problems, such as k-means clustering and text retrieval.
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