Chapter 18

University of Amsterdam at the Visual Concept
Detection and Annotation Tasks

Koen E. A. van de Sande and Theo Gevers

Abstract Visual concept detection is important to access visual information on the
level of objects and scene types. The current state-of-the-art in visual concept de-
tection and annotation tasks is based on the bag-of-words model. Within the bag-
of-words model, first points are sampled according to some strategy, then the area
around these points are described using color descriptors. These descriptors are then
vector-quantized against a codebook of prototypical descriptors, which results in
a fixed-length representation of the image. Based on these representations, visual
concept models are trained. In this chapter, we discuss the design choices within the
bag-of-words model and their implications for concept detection accuracy.

18.1 Introduction

Robust image retrieval is highly relevant in a world that is adapting to visual com-
munication. Online services like Flickr show that the sheer number of photos avail-
able online is too much for any human to grasp. Many people place their entire
photo album on the internet. Most commercial image search engines provide ac-
cess to photos based on text or other metadata, as this is still the easiest way for a
user to describe an information need. The indices of these search engines are based
on the filename, associated text or tagging. This results in disappointing retrieval
performance when the visual content is not mentioned, or properly reflected in the
associated text. In addition, when the photos originate from non-English speaking
countries, such as China, or Germany, querying the content becomes much harder.
To cater for robust image retrieval, the promising solutions from the literature
are in majority concept-based, see e.g. the overview in Snoek and Worring (2009),
where detectors are related to objects, like trees, scenes, like a desert, and people,
like big group. Any one of those brings an understanding of the current content. The
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concepts in such a lexicon allows users to query on presence or absence of visual
content elements, e.g. a semantic entry into the data.

The Large-Scale Visual Concept Detection Task of ImageCLEF 2009, discussed
in Nowak and Dunker (2009), evaluates 53 visual concept detectors. The concepts
used are from the personal photo album domain: beach holidays, snow, plants, in-
door, mountains, still-life, small group of people, portrait. For more information on
the dataset and concepts used, see Chapter .

The current state-of-the-art in visual concept detection and annotation tasks is
based on the bag-of-words model (van de Sande et al (2010); Marszalek et al (2007);
Snoek et al (2009); Wang et al (2007)). Within the bag-of-words, first points are
sampled according to some strategy, then the area around these points are described
using color descriptors. These descriptors are then vector-quantized against a code-
book of prototypical descriptors, which results in a fixed-length representation of
the image. Based on these representations, visual concept models are trained.

Based on our previous work on concept detection (van de Sande et al (2010);
Snoek et al (2008); Uijlings et al (2009)), participation of the University of Ams-
terdam within ImageCLEF has focused on improving the robustness of the visual
features used in concept detectors.

Systems with the best performance in image retrieval (van de Sande et al (2010);
Marszatek et al (2007)) and video retrieval (Snoek et al (2008); Wang et al (2007))
use combinations of multiple features for concept detection. The basis for these
combinations is formed by good color features and multiple point sampling strate-
gies. In this chapter, we discuss the design choices within the bag-of-words model
and their implications for concept detection accuracy. We focus especially on the
effect of these choices on the large-scale visual concept detection and annotation
task from ImageCLEF 2009 and ImageCLEF@ICPR 2010.

The remainder of this chapter is organized as follows. Section 18.2 defines com-
ponents in our concept detection pipeline. Section 18.3 details our experiments and
results. Finally, in Section 18.6, conclusions are drawn.

18.2 Concept Detection Pipeline

We perceive concept detection as a combined computer vision and machine learning
problem. The first step is to represent an image using a fixed-length feature vector.
Given a visual feature vector x;, the aim is then to obtain a measure, which indicates
whether semantic concept C is present in photo i. We may choose from various
visual feature extraction methods to obtain x;, and use a supervised machine learning
approach to learn the appearance relation between C and x;. The supervised machine
learning process is composed of two phases: training and testing. In the first phase,
the optimal configuration of features is learned from the training data. In the second
phase, the classifier assigns a probability p(Clx;) to each input feature vector for
each semantic concept C.
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Fig. 18.1: University of Amsterdam’s ImageCLEF 2009 concept detection scheme.
The scheme serves as the blueprint for the organization of Section 18.2.

18.2.1 Point Sampling Strategy

The visual appearance of a concept has a strong dependency on the viewpoint un-
der which it is recorded. Salient point methods Tuytelaars and Mikolajczyk (2008)
introduce robustness against viewpoint changes by selecting points, which can be re-
covered under different perspectives. Another simpler solution is to use many points,
which is achieved by dense sampling.

In the context of concept classification, two classes of concepts are identified:
objects and scene types. Dense sampling has been shown to be advantageous for
scene type classification, since salient points do not capture the entire appearance of
an image. For object classification, salient points can be advantageous because they
ignore homogenous areas in the image. If the object background is not highly tex-
tured, then most salient points will be located on the object or the object boundary.

We summarize our sampling approach in Figure 18.1: Harris-Laplace and dense
point selection, and a spatial pyramid.!

Harris-Laplace point detector

In order to determine salient points, Harris-Laplace relies on a Harris corner de-
tector. By applying it on multiple scales, it is possible to select the characteristic
scale of a local corner using the Laplacian operator, discussed in Tuytelaars and
Mikolajczyk (2008). Hence, for each corner the Harris-Laplace detector selects a

! Software to perform point sampling, color descriptor computation and the hard and soft assign-
ment is available from http://www.colordescriptors.com.



scale-invariant point if the local image structure under a Laplacian operator has a
stable maximum.

Dense point detector

For concepts with many homogenous areas, like scenes, corners are often rare.
Hence, for these concepts relying on a Harris-Laplace detector can be suboptimal.
To counter the shortcoming of Harris-Laplace, random and dense sampling strate-
gies have been proposed by Fei-Fei and Perona (2005) and Jurie and Triggs (2005).
We employ dense sampling, which samples an image grid in a uniform fashion us-
ing a fixed pixel interval between regions. To study the effect of different parameter
choices for dense sampling, we investigate three different settings:

e An interval of 6 pixels and sample at a singe scale (o0 = 1.2).
e An interval of 6 pixels and sample at multiple scales (c = 1.2 and o = 2.0).
e Aninterval of 1 pixel, e.g. sample every pixel with a singe scale (o = 1.2).

Spatial pyramid

Both Harris-Laplace and dense sampling give an equal weight to all keypoints, irre-
spective of their spatial location in the image. To overcome this limitation, Lazebnik
et al (2006) suggest to repeatedly sample fixed subregions of an image, e.g. 1x1, 2x2,
4x4, etc., and to aggregate the different resolutions into a so called spatial pyramid.
Since every region is an image in itself, the spatial pyramid can be used in com-
bination with both the Harris-Laplace point detector and dense point sampling, as
was done in van de Sande et al (2008), for example. For the ideal spatial pyramid
configuration, Lazebnik et al (2006) claims 2x2 is sufficient, Marszatek et al (2007)
suggests to include 1x3 also. We investigate multiple divisions of the image in our
experiments.

18.2.2 Color Descriptor Extraction

In the previous section, we addressed the dependency of the visual appearance of
semantic concepts on the viewpoint under which they are recorded. However, the
lighting conditions during photography also play an important role. van de Sande
et al (2010) analyzed the properties of color descriptors under classes of illumina-
tion changes within the diagonal model of illumination change, and specifically for
data sets consisting of Flickr images. In ImageCLEF, the images used also origi-
nate from Flickr. Here we use the four color descriptors from the recommendation
table in van de Sande et al (2010). The descriptors are computed around salient
points obtained from the Harris-Laplace detector and dense sampling. For the color
descriptors in Figure 18.1, each of those four descriptors can be inserted.



SIFT

The SIFT feature proposed by Lowe (2004) describes the local shape of a region
using edge orientation histograms. The gradient of an image is shift-invariant: taking
the derivative cancels out offsets (see van de Sande et al (2010) for details). Under
light intensity changes, i.e. a scaling of the intensity channel, the gradient direction
and the relative gradient magnitude remain the same. Because the SIFT feature is
normalized, the gradient magnitude changes have no effect on the final feature. To
compute SIFT features, we use the version described by Lowe (2004).

OpponentSIFT

OpponentSIFT describes all the channels in the opponent color space using SIFT
features. The information in the O3 channel is equal to the intensity information,
while the other channels describe the color information in the image. The feature
normalization, as effective in SIFT, cancels out any local changes in light intensity.

C-SIFT

The C-SIFT feature uses the C invariant by Geusebroek et al (2001), which can
be intuitively seen as the gradient (or derivative) for the normalized opponent color
space O1/I and O2/I. The I intensity channel remains unchanged. C-SIFT is known
to be scale-invariant with respect to light intensity. See Burghouts and Geusebroek
(2009) and van de Sande et al (2010) for detailed evaluation.

RGB-SIFT

For the RGB-SIFT, the SIFT feature is computed for each RGB channel indepen-
dently. Due to the normalizations performed within SIFT, it is scale-invariant, shift-
invariant, and invariant to light color changes and shift (see van de Sande et al (2010)
for details).

18.2.3 Bag-of-Words model

We use the well-known bag-of-words model, also known as codebook approach,
see e.g. Leung and Malik (2001); Jurie and Triggs (2005); Zhang et al (2007); van
Gemert et al (2010); van de Sande et al (2010). First, we assign visual descriptors
to discrete codewords predefined in a codebook. Then, we use the frequency distri-
bution of the codewords as a feature vector representing an image. We construct a
codebook with a maximum size of 4096 using k-means clustering. An important is-



sue is codeword assignment. An comparison of codeword assignment is presented in
van Gemert et al (2010). Here we only discuss two codeword assignment methods:

e Hard assignment. Given a codebook of codewords, the traditional codebook
approach assigns each descriptor to a single best representative codeword in the
codebook. Basically, an image is represented by a histogram of codeword fre-
quencies describing the probability density over codewords.

o Soft-assignment. The traditional codebook approach may be improved by us-
ing soft-assignment through kernel codebooks. A kernel codebook uses a kernel
function to smooth the hard-assignment of image features to codewords. Out of
the various forms of kernel-codebooks, we selected codeword uncertainty based
on its empirical performance, shown in van Gemert et al (2010).

Each of the possible sampling methods from Section 18.2.1 coupled with each visual
descriptor from Section 18.2.2, and an assignment approach results in a separate
visual codebook. An example is a codebook based on dense sampling of RGB-SIFT
features in combination with hard-assignment. Naturally, various configurations can
be used to combine multiple of these choices. By default, we use hard assignment in
our experiments. Soft assignment is only used when explicitly stated. For simplicity,
we employ equal weights in our experiments when combining different features.

18.2.4 Machine Learning

The supervised machine learning process is composed of two phases: training and
testing. In the first phase, the optimal configuration of features is learned from the
training data. From all machine learning approaches on offer to learn the appearance
relation between C and x;, the support vector machine by Vapnik (2000) is com-
monly regarded as a solid choice. We use the LIBSVM implementation by Chang
and Lin (2001) with probabilistic output as described in Lin et al (2007). The param-
eter of the support vector machine we optimize is C. In order to handle imbalance
in the number of positive versus negative training examples, we fix the weights of
the positive and negative class by estimation from the class priors on training data.
It was shown by Zhang et al (2007) that in a codebook-approach to concept detec-
tion the earth movers distance and x? kernel are to be preferred. We employ the >
kernel, as it is less expensive in terms of computation.

In the second machine learning phase, the classifier assigns a probability p(C|x;)
to each input feature vector for each semantic concept C, i.e. the trained model is
applied to the test data.



18.3 Experiments

Experiments in this section are performed using the MIR-Flickr dataset (see Chap-
ter ) using the 53 concepts annotated for ImageCLEF 2009. Concept models are
trained using the ImageCLEF 2009 Photo Annotation task training set. Results are
computed using the labels provided after the contest for 3000 images from the test
set. In subsequent years, these images became part of the training set. All results
in this section will use the Average Precision metric which will be the standard for
the large-scale visual concept detection and annotation task from ImageCLEF 2010
onward. Higher average precision scores imply better accurate concept detection.

18.3.1 Spatial Pyramid Levels

In Table 18.1, we show results for different subdivisions of the image based on the
spatial pyramid framework. These results are obtained for an intensity SIFT descrip-
tor sampled with an interval of 6 pixels at two different scales and hard codebook
assignment.

Table 18.1: Overall results of using different pyramid levels on the 3000 images
from ImageCLEF 2009 whose annotations have been made available. Evaluated
over 53 concepts in the Photo Annotation task using Mean Average Precision
(MAP). The third column lists the number of concepts for which that row obtains the
highest AP relative to all other rows (excluding the bottom row with the 1x1, 2x2,
1x3 combination). In the fourth row, the bottom row is included when determining
the row with the highest AP.

Pyramid subdivisions Average Precision #concepts with highest AP #concepts with highest AP

1x1 0,415 0 0
2x2 0,411 3 2
3x3 0,398 3 3
1x2 0,409 1 1
1x3 0,421 5 3
2x1 0,398 1 1
3x1 0,396 1 1
1x1, 2x2 0,427 10 6
1x1, 1x2 0,427 6 6
1x1, 1x3 0,432 14 7
1x1, 2x1 0,420 6 5
1x1, 3x1 0,421 4 4
1x1, 2x2, 1x3 0,433 not included 14

Inspecting the results, we see in the first seven rows that only a pyramid with
horizontal bars, 1x3, obtains higher overall AP than just using the full image (1x1



subdivision). Therefore, we introduce combinations of two pyramid subdivisions,
one of which is always 1x1. Here, we see that 1x1+2x2, 1x1+1x2 and 1x1+1x3
obtain the highest overall scores. Looking at per-concept results (not shown here),
1x1+2x2 obtains the highest AP compared to other subdivisions for 10 concepts
(see third column), and 1x1+1x3 for 14 concepts. The subdivision of 1x1+1x2 ob-
tains the highest score for only 6 concepts. Based on these results and its popularity
in the PASCAL VOC Everingham et al (2010), we introduce the combination of
1x1+2x2+1x3, which combines the two best subdivisions with two parts. If we then
recount the number of concepts for which a row obtains the highest AP (see the
fourth column), this new combination obtains the highest score for 14 concepts and
the highest AP of all rows.

In terms of priority, the 1x3 subdivision (horizontal bars) is the most important,
then the 1x1 subdivision (the whole image), and finally a 2x2 division. This raises
the question as to why the 1x3 subdivision works so well on the MIR-Flickr dataset.
A possible explanation is the way photographers work: they attempt to center the
object of interest, have a straight horizon which is approximately in the middle of
the image. Therefore, the top horizontal bar of a 1x3 division will probably be sky,
the middle horizontal bar will contain the object of interest plus the horizon, and the
bottom bar will contain the ground.

Based on these results, we draw the conclusion that using a combination of spatial
subdivisions of 1x1, 2x2 and 1x3 is a good choice for the MIR-Flickr dataset. The
experiments in the remainder of this section will use exactly these subdivisions.

18.3.2 Point Sampling Strategies and Color Descriptors

In Figure 18.2, results are shown for 4 different point sampling methods and 4 differ-
ent color descriptors. Inspecting these results, dense sampling clearly outperforms
the Harris-Laplace salient points. Sampling at two scales instead of a single scale
at an interval of 6 pixels is better. However, when the sampling interval is set to
1 pixel, e.g. every pixel is described, performance at a single scale exceeds the 6-
pixel multi-scale results. These observations are consistent across all descriptors.
The main drawback of sampling every pixel is that 36 times more descriptors are ex-
tracted per image, which results in a significant increase in feature extraction times.
A possible solution to the computational load is to use software specifically opti-
mized for dense sampling, as is done in Uijlings et al (2009).

When comparing the performance of different descriptors in Figure 18.2, we
observe that the RGB-SIFT descriptor yields the highest performance on the MIR-
Flickr dataset. The presence of rather ‘artistic’ photographs with large variations in
lighting conditions in the dataset might explain why the illumination color-invariant
descriptor gets the best results. Ordering the descriptors by their performance, the
OpponentSIFT descriptor is in second place, followed by SIFT and finally C-SIFT.

In conclusion, a dense sampling strategy and the RGB-SIFT descriptor together
give the best results for a single feature on the MIR-Flickr dataset.
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Fig. 18.2: Performance of color descriptors using either Harris-Laplace salient
points or dense sampling. The dense sampling has an interval of either 1 or 6 pixels
and is carried out at one (1.2) or two scales (1.2 and 2).

18.3.3 Combinations of Sampling Strategies and Descriptors

Complete concept detection systems do not use a single feature, as was done in the
previous section, but use combinations of different features. The more features are
added, the higher the performance becomes. In Figure 18.3 and Table 18.2, results
of different system configurations are shown. The baseline is a single feature, the
densely sampled SIFT descriptor with a 1x1, 2x2 and 1x3 spatial pyramid, i.e. the
best result from the spatial pyramid experiment. From the comparative experiment
of point sampling strategies and descriptor, we know the RGB-SIFT descriptor is
the best individual descriptor for the MIR-Flickr dataset. Therefore, results for this
descriptor are also listed.

The best combinations typically used in the University of Amsterdam concept
detection system are as follows:

e Combination of 8 features: Harris-Laplace salient points paired with each of the
4 ColorSIFT descriptors, and densely sampled points at multiple scales with an
interval of 6 pixels, also paired with each of the 4 ColorSIFT descriptors.

e Combination of 8 features: Harris-Laplace salient points paired with each of the
4 ColorSIFT descriptors, and densely sampled points at a single scale at every
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Fig. 18.3: Performance of different combinations of multiple point sampling strate-
gies and multiple descriptors. Numeric results are given in Table 18.2.

pixel, e.g. an interval of 1 pixel, also paired with each of the 4 ColorSIFT de-
scriptors.

The results in Figure 18.3 and Table 18.2 show that the first combination is a rel-
ative improvement of 7% over the RGB-SIFT feature (absolute difference 0.032).
The second combination is an improvement of 8% (absolute difference 0.038).
These differences are significant in benchmark evaluations, and they show that using
different color descriptors together is not redundant, because performance improved
by combining them.

It is important to realize that about 90% of the state-of-the-art performance can
be obtained by using the densely sampled RGB-SIFT feature with an interval of 6
pixels. The computational effort to extract this feature instead of applying the full
feature combination is 8 times lower when compared to the first combination, and 25
times lower compared to the second combination. For datasets orders of magnitude
larger than the MIR-Flickr dataset, choosing the single best feature might be more
practical.

Table 18.2: Performance of different combinations of multiple point sampling strate-
gies and multiple descriptors. A visualization of the results is given in Figure 18.3.

Combinations of sampling strategies and descriptors Average Precision
Dense sampling every 6 pixels (multi-scale) with SIFT (baseline) 0,433
Dense sampling every 6 pixels (multi-scale) with RGB-SIFT 0,446
Harris-Laplace and dense sampling every 6 pixels (multi-scale) with 4-SIFT 0,478

Harris-Laplace and dense sampling every pixel (single-scale) with 4-SIFT 0,484




In conclusion, by combining different sampling strategies and descriptors, a per-
formance improvement of up to 8% is possible. At the same time, when feature
extraction becomes a computational bottleneck, picking a single good feature can
already give up to 90% of the performance of the state-of-the-art.

18.3.4 Discussion

Based on the experiments in this section, we have found that the combination of spa-
tial pyramid subdivisions of 1x1, 2x2 and 1x3 is a good choice for the MIR-Flickr
dataset. This confirms similar observations made on the PASCAL VOC in Evering-
ham et al (2010).

In terms of point sampling strategy, dense sampling strategy gives the best results
for on the MIR-Flickr dataset. This is related to the large number of scene concepts
to be annotated: dense sampling has been shown to be advantageous for scene type
classification, since salient points do not capture the entire appearance of an image.
For dense sampling, it holds that denser sampling almost always gives higher accu-
racy than coarser sampling. The decision on how dense to sample should be made
based on the available compute resources.

Which descriptor gives the highest performance depends on the dataset used:
in van de Sande et al (2010) the C-SIFT descriptor gives the highest accuracy on
PASCAL VOC. On the MIR-Flickr dataset, the RGB-SIFT descriptor, which is in-
variant to illuminant color changes, gives the highest average precision.

By combining different sampling strategies and descriptors, as is done in all con-
cept detection systems aiming for high accuracy, a performance improvement of up
to 8% is possible given the features in this chapter. When limited compute resources
are available, picking a single good feature, e.g. refraining from the use of combina-
tions, can already give up to 90% of the performance of the current state-of-the-art.

18.4 ImageCLEF 2009

This section reports on the official ImageCLEF 2009 results of our concept detection
system. Our focus on invariant visual features for concept detection in ImageCLEF
2009 was successful. It has resulted in the top ranking for the large-scale visual
concept detection task in terms of both EER and AUC.

All runs submitted to ImageCLEF 2009 use both Harris-Laplace, dense sampling
with an interval of 6 pixels at two scales, the SVM classifier and a spatial pyramid
with 1x1, 2x2 and 1x3 subdivisions. We do not use the EXIF metadata provided for
the photos.

e OpponentSIFT: single color descriptor with hard assignment.
e 2-SIFT: uses OpponentSIFT and SIFT descriptors.



e 4-SIFT: uses OpponentSIFT, C-SIFT, RGB-SIFT and SIFT descriptors. This run
is equal to the first combination of the combination experiment in Section 18.3.3.

o Soft 4-SIFT: uses OpponentSIFT, C-SIFT, RGB-SIFT and SIFT descriptors with
soft assignment. The soft assignment parameters have been taken from our PAS-
CAL VOC 2008 system van de Sande et al (2010).

In table 18.3, the overall scores for the evaluation of concept detectors are shown.
We note that the 4-SIFT run with hard assignment achieves not only the highest
performance amongst our runs, but also over all other runs submitted to the Large-
Scale Visual Concept Detection task.

Table 18.3: Overall results of the our runs evaluated over all concepts in the Photo
Annotation task using the equal error rate (EER) and the area under the curve
(AUCQ).

Run name Codebook Average EER Average AUC
4-SIFT Hard-assignment 0.2345 0.8387
Soft 4-SIFT  Soft-assignment 0.2355 0.8375
2-SIFT Hard-assignment 0.2435 0.8300
OpponentSIFT Hard-assignment 0.2530 0.8217

In table 18.4, the Area Under the Curve scores have been split out per concept.
We observe that the three aesthetic concepts have the lowest scores. This comes as
no surprise, because these concepts are highly subjective: even human annotators
only agree around 80% of the time with each other. For virtually all concepts be-
sides the aesthetic ones, either the Soft 4-SIFT or the Hard 4-SIFT is the best run.
This confirms our beliefs that these (color) descriptors are not redundant when used
in combinations. Therefore, we recommend the use of these 4 descriptors instead
of 1 or 2. The difference in overall performance between the Soft 4-SIFT or the
Hard 4-SIFT run is quite small. Because the soft codebook assignment smoothing
parameter was directly taken from a different dataset, we expect that the soft as-
signment run could be improved if the soft assignment parameter was selected with
cross-validation on the training set. Together, our runs obtain the highest Area Un-
der the Curve scores for 40 out of 53 concepts in the Photo Annotation task (20 for
Soft 4-SIFT, 17 for 4-SIFT and 3 for the other runs). This analysis has shown us
that our system is falling behind for concepts that correspond to conditions we have
included invariance against. Our method is designed to be robust to unsharp images,
so for Out-of-focus, Partly-Blurred and No-Blur there are better approaches possi-
ble. For the concepts Overexposed, Underexposed, Neutral-Illumination, Night and
Sunny, recognizing how the scene is illuminated is very important. Because we are
using invariant color descriptors, a lot of the discriminative lighting information is
no longer present in the descriptors. Again, there should be better approaches pos-
sible for these concepts, such as estimating the color temperature and overall light
intensity.



Table 18.4: Results per concept for our runs in the Large-Scale Visual Concept De-
tection Task using the Area Under the Curve. The highest score per concept is high-
lighted using a grey background. The concepts are ordered by their highest score.

Concept 4-SIFT Soft 4-SIFT 2-SIFT Opp.SIFT Concept 4-SIFT Soft 4-SIFT 2-SIFT Opp.SIFT
Clouds 0,958 0,958 0,951 0,945 No-Visual-Time 0,833 0,835 0,822 0,815
Sunset-Sunrise 0,953 0,954 0,947 0,946 Indoor 0,830 0,835 0,823 0,810
Sky 0,945 0,948 0,935 0,930 Familiy-Friends 0,834 0,834 0,822 0,813
Landscape-Nature 0,944 0,942 0,940 0,936 Partylife 0,834 0,834 0,831 0,819
Sea 0,935 0,930 0,932 0,926 Vehicle 0,832 0,832 0,832 0,822
Mountains 0,934 0,931 0,930 0,922 Animals 0,818 0,828 0,811 0,797
Lake 0,911 0,903 0,912 0,900 Citylife 0,826 0,826 0,819 0,813
Beach-Holidays 0,906 0,907 0,898 0,884 Still-Life 0,824 0,825 0,808 0,795
Trees 0,903 0,902 0,892 0,881 Spring 0,822 0,801 0,812 0,791
Water 0,901 0,903 0,892 0,886 Canvas 0,817 0,810 0,803 0,790
Night 0,898 0,895 0,895 0,892 Summer 0,813 0,813 0,791 0,782
River 0,897 0,889 0,891 0,883 Macro 0,812 0,791 0,805 0,795
Outdoor 0,890 0,896 0,879 0,871 No-Visual-Season 0,805 0,806 0,794 0,782
Food 0,895 0,895 0,881 0,877 Small-Group 0,792 0,795 0,784 0,776
Desert 0,891 0,865 0,891 0,884 Single-Person 0,792 0,795 0,780 0,769
Building-Sights 0,880 0,882 0,873 0,861 Out-of-focus 0,792 0,781 0,784 0,774
Big-Group 0,881 0,877 0,870 0,858 No-Visual-Place 0,789 0,786 0,781 0,779
Plants 0,877 0,881 0,853 0,839 Overexposed 0,788 0,782 0,777 0,771
Flowers 0,868 0,875 0,846 0,836 Neutral-lllumination 0,778 0,783 0,775 0,774
Autumn 0,870 0,866 0,863 0,849 Sunny 0,763 0,765 0,744 0,741
Portrait 0,865 0,864 0,857 0,846 Motion-Blur 0,744 0,747 0,725 0,710
Underexposed 0,858 0,859 0,857 0,854 Sports 0,695 0,695 0,679 0,673
No-Persons 0,850 0,858 0,837 0,826 Aesthetic-Impression 0,658 0,662 0,657 0,657
Partly-Blurred 0,852 0,852 0,845 0,830 Overall-Quality 0,656 0,656 0,653 0,658
Winter 0,843 0,846 0,832 0,828 Fancy 0,565 0,559 0,580 0,583
Snow 0,846 0,845 0,829 0,825 | Average 0,8387  0,8375 0,8300 0,8217
Day 0,841 0,845 0,831 0,824

No-Blur 0,843 0,845 0,836 0,823

18.4.1 Evaluation Per Image

For the hierarchical evaluation, overall results are shown in table 18.5. When com-
pared to the evaluation per concept, the Soft 4-SIFT run is now slightly better than
the normal 4-SIFT run. While our method provides the best run for the per-concept
evaluation, for the hierachical evaluation measure, several other participants per-
form better. Discussion at the workshop has shown that exploiting the hierachical
nature of the concepts used is an interesting future direction.

18.4.2 Conclusion

The focus on invariant visual features for concept detection in ImageCLEF 2009
was successful. It resulted in the top ranking for the large-scale visual concept de-
tection task in terms of both EER and AUC. For 40 individual concepts, the highest
performance of all submissions to the task was obtained. For the hierarchical evalu-
ation, how to exploit the hierachical nature of the concepts is still an open question.



Table 18.5: Results using the hierarchical evaluation measures for our runs in the
ImageCLEF 2009 Large-Scale Visual Concept Detection Task.

Average Annotation Score

Run name Codebook with agreement without agreement
Soft 4-SIFT  Soft-assignment 0.7647 0.7400
4-SIFT Hard-assignment 0.7623 0.7374
2-SIFT Hard-assignment 0.7581 0.7329
OpponentSIFT Hard-assignment 0.7491 0.7232

18.5 ImageCLEF@ICPR 2010

The visual concept detection and annotation task has been part of a contest for the
2010 ICPR conference. The MIR-Flickr dataset is used with the 53 concepts an-
notated for ImageCLEF 2009. However, this time there are 8000 labelled images
available for training, and the test set consists of 13000 images.

University of Amsterdam submitted two runs to the ICPR contest: the two good
combinations which were identified in Section 18.3.3. In table 18.6, the overall
scores for the evaluation of concept detectors are shown. The first run is equal in
terms of features to the best run submitted to ImageCLEF 2009. The second run,
with more densely sampled SIFT, achieves higher accuracy. Compared to all other
runs submitted to the task, the University of Amsterdam runs are ranked in second
place. University of Surrey achieved the highest overall accuracy. Their system uses
similar visual features within a bag-of-words model, but uses improved machine
learning algorithms.

Table 18.6: Overall results of the our runs evaluated over all concepts in the Image-
CLEF@ICPR 2010 Photo Annotation task using the equal error rate (EER) and the
area under the curve (AUC).

Run contents Average EER Average AUC
Harris-Laplace and dense sampling every 6 pixels (multi-scale) with 4-SIFT 0.2214 0.8538
Harris-Laplace and dense sampling every pixel (single-scale) with 4-SIFT ~ 0.2182 0.8568
University of Surrey (enhanced machine learning) 0.2136 0.8600

18.6 Conclusion

The current state-of-the-art in visual concept detection and annotation tasks is based
on the bag-of-words model. Within this model, we have identified several design



choices which lead to higher classification accuracy. Participation in the Image-
CLEF Photo Annotation benchmarks was successful, and this participation was
based on the following conclusions: (1) In terms of point sampling strategy, dense
sampling gives the best results due to the large number of scene concepts to be
annotated. (2) Increasing sampling density improves accuracy. (3) Spatial pyramid
subdivisions of 1x1, 2x2 and 1x3 are a good choice for datasets in general. (4) The
descriptor which gives the highest performance depends on the dataset used; for the
MIR-Flickr dataset, the RGB-SIFT descriptor is recommended. (5) By combining
different sampling strategies and descriptors, a performance improvement of up to
8% is possible given the features in this chapter.

Finally, when limited compute resources are available, picking a single good
feature, e.g. refraining from the use of combinations, can already give up to 90% of
the performance of the current state-of-the-art.
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