
1

Empowering Visual Categorization with the GPU
Koen E. A. van de Sande, Student Member, IEEE, Theo Gevers, Member, IEEE,

and Cees G. M. Snoek, Member, IEEE

Abstract—Visual categorization is important to manage large
collections of digital images and video, where textual meta-data is
often incomplete or simply unavailable. The bag-of-words model
has become the most powerful method for visual categorization of
images and video. Despite its high accuracy, a severe drawback of
this model is its high computational cost. As the trend to increase
computational power in newer CPU and GPU architectures is
to increase their level of parallelism, exploiting this parallelism
becomes an important direction to handle the computational cost
of the bag-of-words approach. When optimizing a system based
on the bag-of-words approach, the goal is to minimize the time it
takes to process batches of images. Additionally, we also consider
power usage as an evaluation metric.

In this paper, we analyze the bag-of-words model for visual
categorization in terms of computational cost and identify two
major bottlenecks: the quantization step and the classification
step. We address these two bottlenecks by proposing two efficient
algorithms for quantization and classification by exploiting the
GPU hardware and the CUDA parallel programming model. The
algorithms are designed to (1) keep categorization accuracy in-
tact, (2) decompose the problem and (3) give the same numerical
results.

In the experiments on large scale datasets it is shown that, by
using a parallel implementation on the Geforce GTX260 GPU,
classifying unseen images is 4.8 times faster than a quad-core
CPU version on the Core i7 920, while giving the exact same
numerical results. In addition, we show how the algorithms can
be generalized to other applications, such as text retrieval and
video retrieval. Moreover, when the obtained speedup is used to
process extra video frames in a video retrieval benchmark, the
accuracy of visual categorization is improved by 29%.

I. INTRODUCTION

Visual categorization aims to determine whether objects or
scene types are visually present in images or video segments.
This is a useful prerequisite to manage large collections of
digital images and video, where textual meta-data is often
incomplete or simply unavailable [1]. Letting humans annotate
such meta-data is expensive and infeasible for large datasets.
While automatic visual categorization is not yet as accurate
as a human annotation, it is a useful tool to manage large
collections. The bag-of-words model [2] has become the most
powerful method today for visual categorization [3–11]. The
bag-of-words model computes image descriptors at specific
points in the image. These descriptors are then quantized
against a codebook of prototypical descriptors to obtain a
fixed-length representation of an image. Although the bag-of-
words model is a powerful mechanism for accurate visual cat-

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Manuscript received March 1, 2010; revised June 4, 2010.
The authors are with the Intelligent Systems Lab Amsterdam, University

of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
(e-mail: ksande@uva.nl).

egorization, a severe drawback is its high computational cost.
Current state-of-the-art in visual categorization benchmarks
such as TRECVID 2009 [12] require weeks of compute time
on compute clusters to process 380 hours of video. However,
even with weeks of compute time, most systems are still only
able to process a limited subset of about 250,000 frames.
In the future, more and more data needs to be processed as
datasets continue to grow. To address the problem of com-
putation, the two directions are faster approximate methods
and larger compute clusters. Faster to compute descriptors
(such as SURF [13, 14]) and indexing mechanisms (tree-based
codebooks [15, 16]) have been developed. Another direction is
to use large compute clusters with many CPUs [10, 11, 17] to
solve the computational problem using brute force. However,
both directions have their drawbacks. Faster methods will (1)
suffer from reduced accuracy when they resort to increasingly
coarse approximations and (2) suffer from increased com-
plexity in the form of additional parameters and thresholds
to control the approximations, all of which need to be hand-
tuned. Brute force solutions based on compute clusters have
the problem that (1) compute clusters are available in limited
supply and (2) due to the complexities of resource scheduling
and the large (network) communication overheads found in
large distributed compute clusters, they are difficult to use
efficiently.

Recently, another direction for acceleration has opened up:
computing on consumer graphics hardware. Cornelis and Van
Gool [18] have implemented SURF on the GPU (Graph-
ics Processing Unit) and obtained an order of magnitude
speedup compared to a CPU implementation. These GPU
implementations [18, 19] build on the trend of increased
parallelism. In recent years, the most important method for
higher computational power in both CPUs and GPUs has
been to increase parallelism: the number of processing units
is increased, instead of the speed of the processing units.
GPUs have been evolving faster than CPUs, with transistor
counts doubling every few months. Whereas commodity CPUs
currently have up to 4 cores, commodity GPUs have up
to 30 cores at their disposal [20]. Together, the increased
programmability and computational power of GPUs provides
ample opportunities for acceleration of algorithms which can
be parallelized [21]. However, note that the parallelization of
an algorithm can be applied to CPU implementations as well.
CPU implementations should be multi-threaded and SIMD-
optimized to allow for a fair comparison to optimized GPU
versions [22–24]. Compared to faster approximate methods,
algorithms for the GPU do not need to approximate for
speedups, if they are able to exploit the parallel nature of the
GPU. Compared to compute clusters, the main advantages of
the GPU are their wide availability and their potential to be

2

more energy-efficient.
When optimizing a system based on the bag-of-words

model, the goal is to minimize the time it takes to process
batches of images. Individual components of the bag-of-words
model, such as the point sampling strategy, descriptor com-
putation and SVM model training, have been independently
studied on the GPU before [18, 25, 26]. These studies accel-
erate specific algorithms with the GPU. However, it remains
unclear whether those algorithms are the real bottlenecks in
accurate visual categorization with the bag-of-words model.
In our overview of related work on visual categorization with
the GPU, we observe that quantization and classification have
remained CPU-bound so far, despite being computationally
very expensive.

Therefore, in this paper, the goal is to combine GPU
hardware and a parallel programming model to accelerate
the quantization and classification components of a visual
categorization architecture. Two algorithms are proposed to
accelerate these two components. We identify the following
requirements to these algorithms:

1) The algorithms and their implementations should push
the state-of-the-art in categorization accuracy.

2) Visual categorization must be decomposable into com-
ponents to locate bottlenecks.

3) Given the same input, implementations of a component
on various hardware architectures must give the same
output1.

Requirement 1 states that we are pursuing algorithms and
implementations which will push the state-of-the-art in cate-
gorization accuracy, and therefore require high computational
throughput. Requirement 2 implies that visual categorization
can be decomposed into several steps, and the computational
bottlenecks are located in specific parts. Requirement 3 allows
CPU and GPU versions of the same visual categorization
component to be interchanged in the system, because both
versions will give the same output. Therefore, keeping the rest
of the system the same, time measurements can be performed
on these individual components.

Our contributions are (1) an analysis of the bottlenecks in
accurate visual categorization systems and, to address these
bottlenecks, (2) two GPU-accelerated algorithms, GPU vector
quantization and GPU kernel value precomputation, which
results in a substantial acceleration of the complete visual
categorization pipeline.

This paper is organized as follows. In section II, an effi-
ciency analysis of visual categorization based on the bag-of-
words model is made. In section III, the GPU architecture and
the GPU-accelerated versions of quantization and classification
are discussed. In section IV, the experimental setup used to
evaluate the accelerations is presented. In section V, results
are shown and analyzed. In section VI, applications of the
speedups in this paper besides visual categorization are dis-
cussed. Finally, in section VII, we conclude with an overview
of the benefits of GPU acceleration for visual categorization.

1For practical purposes, small numeric deviations (less than 10−7) in the
output of a component are considered to be the same. We have verified
that these deviations have not changed the accuracy of the complete visual
categorization system.

II. OVERVIEW OF VISUAL CATEGORIZATION

The aim of this paper is to speed up state-of-the-art vi-
sual categorization systems using GPUs. In visual categoriza-
tion [27], the visual presence of an object or scene of specified
type is determined. In Figure 1, an overview of the components
of a visual categorization system is shown. A trained visual
categorization system takes an image as input and returns the
likelihood that one or more visual categories are present in
the image. Visual categorization systems break down into a
number of common steps:

• Image Feature Extraction, which takes an image as input
and outputs a fixed-length feature vector representing the
image.

• Category Model Learning, learns one model per visual
category by taking all vector representations of images
from the train set and the category labels associated with
those images.

• Test Image Classification, which takes vector representa-
tions of images from the test set and applies the visual
category models to these images. The output of this step
is a likelihood score for each image and each visual
category.

A. Image Feature Extraction

Visual categorization systems which achieve state-of-the-
art results on the PASCAL VOC benchmarks [4, 5, 7] use
the bag-of-words model [2] as the underlying representation
model. This model first extracts specific points in an image
using a point sampling strategy. Over the area around these
points, descriptors are computed which represent the local
area. The bag-of-words model performs vector quantization
of the descriptors in an image against a visual codebook. A
descriptor is assigned to the codebook element which is closest
in Euclidean space. Figure 1 gives an overview of the steps for
the bag-of-words model in the image feature extraction blocks.
In Table I, the computation times of different steps within
the bag-of-words model are listed. For every step, multiple
options are available. Next, we will discuss these options, their
presence in related work and their computation times on the
CPU and GPU.

1) Point Sampling Strategy: As a point sampling strategy,
there are two commonly used techniques in state-of-the-art
systems [5, 7]: dense sampling and salient point methods.
Dense sampling samples points regularly over the image at
fixed pixel intervals. As it does not depend on the image
contents, it is a trivial operation to perform. Typically, around
10,000 points are sampled per image. Two examples of
salient point methods are the Harris-Laplace salient point
detector [29] and the Difference-of-Gaussians detector [28].
See Table I for computation times of these point sampling
strategies. The Harris-Laplace detector uses the Harris corner
detector to find scale-invariant interest points. It then selects a
subset of these points for which the Laplacian-of-Gaussians
reaches a maximum over scale. Using recursive Gaussian
filters [30], the computation of Gaussian derivatives at multiple
scale required for these steps is possible at a rate of multiple
images per second: computational complexity of recursive

3

Category Model Learning

Image Feature Extraction

0

1

R e l a t i v e

f r e que nc y

1 2 3 4 5

Code book e l e me nt

Harris-Laplace, dense sampling, ...

Point sampling strategy Descriptor computation Bag-of-words model

Vector quantization

.

.

.

Image SIFT, SURF, ColorSIFT, ...

Train set

Test set

Image Feature Extraction

0

1

R e l a t i v e

f r e que nc y

1 2 3 4 5

C ode book e l e me nt

Harris-Laplace, dense sampling, ...

Point sampling strategy Descriptor computation Bag-of-words model

Vector quantization

.

.

.

Image SIFT, SURF, ColorSIFT, ...

2

χ
2 kernel function Support Vector Machines, SRKDA

Compute kernel values Train kernel-based classifier

Image Labels

Category Model

Image Classification

2

χ
2 kernel function

Apply model

Compute kernel values Apply model

Category

Likelihoods

Fig. 1. The components of a state-of-the-art visual categorization system. For all images in both the train set and the test set, visual features are extracted
in a number of steps. First, a point sampling method is applied to the image. Then, for every point a descriptor is computed over the area around the point.
All the descriptors of an image are subsequently vector quantized against a codebook of prototypical descriptors. This results in a fixed-length feature vector
representing the image. Next, the visual categorization system is trained based on the feature vectors of all training images and their category labels. To learn
kernel-based classifiers, similarities between training images are needed. These similarities are computed using a kernel function. To apply a trained model
to test images, the kernel function values are also needed. Given these values between a test image and the images in the train set, the category models are
applied and category likelihoods are obtained.

TABLE I
IMAGE FEATURE EXTRACTION TIMINGS. COMPUTATION TIMES OF

DIFFERENT STEPS WITHIN THE BAG-OF-WORDS MODEL WITH A SINGLE
CPU CORE, FOUR CPU CORES AND ON THE GPU. FOR EVERY STEP,

MULTIPLE CHOICES ARE AVAILABLE. CPU TIMES OBTAINED ON AMD
OPTERON 250. GPU TIMES OBTAINED FROM THE LITERATURE. ONE OF
THE CONTRIBUTIONS OF THIS PAPER IS SUBSTANTIALLY ACCELERATING

THE VECTOR QUANTIZATION STEP USING THE GPU.

Image Feature Extraction Times (s)
CPU CPU

(1 thread) (4 threads) GPU

1) Point Sampling Strategy
• Dense Sampling < 0.01 < 0.01 < 0.01
• Difference-of-Gaussians 1.4 0.4 [28] < 0.1 [18]
• Harris-Laplace 4.4 1.2 [29] < 0.2 [30]

2) Descriptors
• SIFT 1.4 0.4 [28] < 0.1 [19]
• SURF < 1.0 < 0.2 [13] < 0.01 [18]
• ColorSIFT 4.0 1.3 [5] < 0.3 [19]

3) Bag-of-Words
• Tree-based Codebook < 0.5 < 0.2 [15, 16] < 0.01 [25]
• Vector Quantization 4.1 1.1 [2] < 0.2 this paper

Gaussian filters is independent of the scale. As has been shown
by Cornelis and Van Gool [18], running the Difference-of-
Gaussians detector is possible in real-time, using a scale-space
pyramid to limit computational complexity.

2) Descriptor Computation: To describe the area around
the sampled points, the SIFT descriptor [28] and the SURF
descriptor [13] are the most popular choices. Sinha et al.
[19] compute SIFT descriptors at 10 frames per second for
640x480 images. Cornelis and Van Gool [18] compute SURF
descriptors at 100 frames per second for 640x480 images.
Both of these papers show that descriptor computation runs
with excellent performance on the GPU, because one thread
can be assigned per pixel or per descriptor, and thereby per-
forming operations in parallel. The standard SIFT descriptor
has a length of 128. Following Everingham et al. [4], color
extensions of SIFT [5] would form a reasonable state-of-the-

art baseline for future VOC challenges, due to their increased
classification accuracy. ColorSIFT increases the descriptor
length to 384 and the required computation time is also tripled.

3) Bag-of-Words: Vector quantization is computationally
the most expensive part of the bag-of-words model. With n
descriptors of length d in an image, the quantization against a
codebook with m elements requires the full (n×m) distance
matrix between all descriptors and codebook elements. For
values which are common for visual categorization, n =
10, 000, d = 128 and codebook size m = 4, 000, a CPU
implementation takes approximately 5 seconds per image, as
the complexity is O(ndm) per image. When d increases to
384, as is the case for ColorSIFT, the CPU implementation
slows down to more than 10 seconds per image, which makes
this a computational bottleneck.

One approach to address this bottleneck is to index using a
tree-based codebook structure [14–16], instead of a standard
codebook. A tree-based codebook replaces the comparison of
each descriptor with all m codebook elements by a comparison
against log(m) codebook elements. As a result, algorithmic
complexity is reduced to O(nd log(m)). Tree-based methods
have been shown to run in real-time on the GPU [25].
However, for a tree-based codebook generally the accuracy is
lower [14], especially for high-dimensional descriptors such
as ColorSIFT. Therefore, tree-based codebooks conflict with
our first requirement: it does not keep accuracy intact. The
same argument applies to other indexing structures such as
miniBOF (mini bag-of-features) [31]: accuracy is sacrificed
in return for faster computation. Another drawback of tree-
based codebooks and miniBOFs is that soft assignment [6,
32], e.g. , assigning weight to more than just the closest
codebook element, requires the full distance matrix instead
of only the closest elements. This soft assignment improves
the classification accuracy for visual categorization by more
than 5% on state-of-the-art systems [32]. Ruling out such

4

an important performance improvement again conflicts with
requirement 1. Therefore, this paper studies how to accelerate
the vector quantization step using normal codebooks on the
GPU, as the same accelerations are then also applicable to
soft assignment.

In conclusion, in a state-of-the-art setup of the bag-of-words
model, the most expensive part is the vector quantization step.
Approximate methods are unable to satisfy our requirement to
maintain accuracy.

B. Category Model Learning

To learn visual category models, supervised kernel-based
learning algorithms such as Support Vector Machines (SVM)
and Spectral Regression Kernel Discriminant Analysis [33]
have shown good results [3, 5]. Key property of a kernel-
based classifier is that it does not require the actual vector
representation of the feature vector ~F , but only a kernel
function k(~F , ~F ′) which is related to the distance between the
feature vectors. This is sometimes referred to as the ‘kernel
trick’. It has been shown experimentally [3] that the non-linear
χ2 kernel function is the best choice [5, 7] for accurate visual
categorization.

When tuning the parameters of the classifier, the values of
the kernel function are needed for every parameter setting.
While typical implementations compute the values of this
kernel function on-the-fly and only keep a cache of the most
recent evaluations, it is more efficient to compute all values in
advance and store them, because then the values can be re-used
for every parameter setting and for every visual category. The
total number of kernel values to be computed in advance is
the number of pair-wise distances between all training images,
e.g. , it is quadratic with respect to the number of images. The
benefit of precomputing kernel values is illustrated in Table II.

The kernel-based SVM algorithm has been ported to the
GPU by [26, 35]. In [35], specific optimizations are made in
the GPU version such that only linear kernel functions are
supported. For visual categorization, however, support for the
more accurate non-linear χ2 kernel function is needed to meet
requirement 1. Catanzaro et al. [26] perform a selection of
the training samples under consideration for SVM, resulting
in a speedup of up to 35 times for training models. Further
speedups are possible if this GPU-SVM implementation is
combined with the precomputation of kernel values. The pre-
computation of kernel values itself has not been investigated
yet. Therefore, in section III-C, we propose an algorithm
to precompute the kernel values and investigate the speedup
possibilities offered by precomputing these values.

Table II gives an overview of computation times on the PAS-
CAL VOC 2008 dataset for different feature vector lengths,
where the learning of visual category models is split into a
precomputation of kernel values and the actual model learning.
Because the ground truth labels of all images and their
extracted features are needed before training can start, it is an
inherently offline process. When multiple features are used,
more than 90% of computation time is spent on precomputing
the kernel values. This makes it the most expensive step in
category model learning.

In conclusion, the learning of category models can be split
into two steps, kernel value computation and classifier training.
The classifier training has been accelerated with the GPU
before, but the kernel value computation is the most expensive
step. This paper will study how to accelerate the computation
of the kernel values on the GPU.

C. Test Image Classification

To classify images from a test set, feature extraction first has
to be applied to the images, similar to the train set. Therefore,
speed-ups obtained in the image feature extraction stage are
useful for both the train set and the test set. To apply the visual
category models, pair-wise kernel values between the feature
vectors of the train set and those of the test set are needed.
The same precomputation strategy used in the learning stage is
applicable here. When accelerating the computation of kernel
values, this speedup will apply to both the training phase and
the test phase of a visual categorization system. Timings in
Table II illustrate that when processing images from the test
set, again, the computation of kernel values takes up the most
time.

In conclusion, the speedups obtained using GPU vector
quantization and GPU precomputation of kernel values also
directly apply to the classification of images/frames from the
test set.

III. GPU ACCELERATED CATEGORIZATION

We first discuss parallel programming with the GPU and the
CPU (section III-A). Next, we discuss the GPU-accelerated
versions of vector quantization (section III-B) and kernel
value precomputation (section III-C). Both of these visual
categorization steps take large numbers of vectors as input,
and therefore are ideally suited for the data parallelism offered
by the GPU.

A. Parallel Programming on the GPU and CPU

Over the years, there have been different approaches to pro-
gramming generic algorithms on GPUs. Initially, algorithms
needed to be formulated in terms of graphics primitives such
as textures and vertices and written in specialized shader
languages before they could run on the GPU. Through the
availability of C-like parallel programming models such as
CUDA [36] and OpenCL [37], the programmability of GPUs
has increased. Since CUDA has the most mature software
stack available at this moment, we use CUDA. The CUDA
parallel programming model is explained in [38]. It is designed
for writing scalable parallel code that runs across tens of
thousands of concurrent threads and dozens of processor cores.
Because the physical parallelism of current GPUs ranges up to
30 processor cores and over 30,000 threads, this is an essential
property. The parallel models allows a programmer to write
parallel programs that transparently and efficiently scale with
this level of parallelism.

The model is also applicable to multicore CPUs, as has been
shown for CUDA by Stratton et al. [39] and Diamos et al.
[40, 41]. However, the code generated by their approaches is

5

TABLE II
COMPUTATION TIMES OF THE DIFFERENT STEPS IN VISUAL CATEGORIZATION. THE TIMES LISTED ARE FOR AN IMAGE DATASET (PASCAL VOC 2008),
WHICH HAS A TRAINING SET OF SIZE 4332 AND TEST SET OF SIZE 4133. CLASSIFICATION TIMES ARE TOTALS FOR ALL 20 VISUAL CATEGORIES. CPU
TIMES OBTAINED ON AMD OPTERON 250. THIS PAPER SUBSTANTIALLY ACCELERATES THE PRECOMPUTATION OF KERNEL VALUES (SHOWN IN BOLD)

USING THE GPU.

Category Model Learning Times (s)
CPU (1 thread) CPU (4 threads) GPU

Category Model Learning (without precomputed)
Parameter Tuning (length ~F = 4, 000) > 1, 000, 000 > 250, 000 [34] > 10, 000 [26]
Train Classifier (length ~F = 4, 000) > 100, 000 > 25, 000 [34] > 1, 000 [26]

Category Model Learning (with precomputed)
Precompute Kernel Values (length ~F = 4, 000) 430 110 10 this paper
Precompute Kernel Values (length ~F = 32, 000) 3,400 900 64 this paper
Precompute Kernel Values (length ~F = 320, 000) 34,000 9,000 650 this paper
Parameter Tuning 1,050 260 [34] 60 [26]
Train Classifier 240 60 [34] 10 [26]

Test Image Classification (with precomputed)
Precompute Kernel Values (length ~F = 4, 000) 430 110 10 this paper
Apply Classifier < 5 < 2 [34] < 1 [26]

not yet as efficient as hand-written CPU code. On the CPU,
programs can be parallellized by running multiple threads
on different cores and by using SIMD instructions. SIMD
instructions perform the same operation on multiple data
elements at the same time, effectively allowing 2 to 4 floating
point instructions to be executed at the same time on a single
core. For additional information see [42]. Internally, the GPU
uses SIMD as well: each of the 30 cores in the GTX275 can
execute 8 floating point instructions at the same time [36].

B. Algorithm 1: GPU-Accelerated Vector Quantization

In section II-A, we have shown that vector quantization
is computationally the most expensive step in image feature
extraction. Therefore, in this section, the GPU implementa-
tion of vector quantization for an image with n descriptors
against a codebook of m elements is proposed. The descriptor
length is d. Quantization against a codebook requires the full
(n×m) distance matrix between all descriptors and codebook
elements. A descriptor is then assigned to the column which
has the lowest distance in a row. By counting the number
of minima occurring in each column, the vector quantized
representation of the image is obtained. To be robust against
changes in the number of descriptors in an image, these counts
are divided by the number of descriptors n for the final feature
vector.

The most expensive computational step in vector quantiza-
tion is the calculation of the distance matrix. Typically, the
Euclidean distance is employed:

||~a−~b|| =
√

(a1 − b1)2 + (a2 − b2)2 + ... + (aq − bq)2. (1)

This formula for the Euclidean distance can be directly imple-
mented on the GPU using loops [43]. However, such a naive
implementation is not very efficient, because the same result
is obtained with fewer operations by simply vectorizing the
Euclidean distance, which is a common trick [26]:

||~a−~b|| =
√
||~a||2 + ||~b||2 − 2~a ·~b. (2)

The advantage of the vector form of the Euclidean distance
is that it allows us to decompose the computation of a distance
matrix between sets of vectors into several smaller steps which
are faster to compute. In Algorithm 1, pseudo code is given for
vector quantization using simple vectorization of the Euclidean
distance. In the algorithm, A is the matrix with all image
descriptors as rows, e.g. , a (n × d) matrix, B is the matrix
with all codebook elements as rows, e.g. , a (m × d) matrix,
~ai is the ith row of A and ~bi is the ith row of B.

Algorithm 1 Vector Quantization with Simple Vectorized
Euclidean Distance

1: for i = 1 to n do
2: lengthsA[i] ← ||~ai||2 {~ai is the ith row of A}
3: end for
4: for j = 1 to m do
5: lengthsB[j] ← ||~bj ||2 {~bj is the jth row of B}
6: end for
7: M ← MatrixMultiply(A, MatrixTranspose(B))
8: for i = 1 to n do
9: minDist ←∞

10: lengthA ← lengthsA[i]
11: for j = 1 to m do
12: d← lengthA + lengthsB[j]−2Mij

13: if d < minDist then minDist ← d, best ← j
14: end for
15: assignTo[i] ← best
16: end for
17: return assignTo

We identify the following steps within Algorithm 1:
1) Compute the squared vector lengths ||~a||2 for every

row of A and ||~b||2 for every row of B (line 1-6). We
assign one GPU thread per vector and do a serial sum
within each thread. To avoid numerical deviations due
to the summing of many numbers with single precision
floating point operations, we use Kahan summation [44].

6

Transposing the matrices A and B allows for faster
(aligned) memory access. The CUDA SDK [45] contains
an efficient implementation of matrix transpose for arbi-
trarily sized matrices. Transposing rectangular matrices
on the GPU is faster than the CPU, because the GPU
has a higher memory bandwidth.

2) Compute the dot products ~a ·~b between all rows of
A and B (line 7). This operation can be performed by
writing it as a matrix multiplication: ABT contains all
the dot products required for the full distance matrix.
As matrix multiplications are the building block for
many algorithms, highly optimized BLAS linear algebra
libraries containing this operation exist for both the CPU
and the GPU. An unvectorized implementation [43] is
unable to take advantage of BLAS operations and is
therefore less efficient.

3) Sum the output of steps (1) and (2) to obtain the
squared Euclidean distance (line 10-12). Key insight
when implementing this operation is that the vector
lengths from step (1) are used multiple times and can
be cached (line 10).

4) For every descriptor i, find the codebook element j
with the lowest distance (line 10-15). The weight for
a descriptor is then assigned to the codebook element
corresponding to the column with the lowest distance.

The CPU implementation of vector quantization is able to
use SSE instructions to execute floating point instructions on 4
single precision numbers at the same time. On a Core i7 920,
the non-SSE version is 3.4 times slower. Our experiments use
the SSE-optimized version only.

In conclusion, vector quantization involves computing the
pair-wise Euclidean distances between n descriptors and m
codebook elements. By simply vectorizing the computation of
the Euclidean distance, the computation can be decomposed
into steps which can be efficiently executed on the GPU.

C. Algorithm 2: GPU-Accelerated Kernel Value Precomputa-
tion

To compute kernel function values, we use the kernel
function based on the χ2 distance, which has shown the most
accurate results in visual categorization (see section II-B). Our
contribution is evaluating the χ2 kernel function on the GPU
efficiently, even for very large datasets which do not fit into
memory. The χ2 distance between feature vectors F and F ′

is:

distχ2(~F , ~F ′) =
1
2

s∑
i=1

(~Fi − ~F ′
i)

2

~Fi + ~F ′
i

, (3)

with s the size of the feature vectors. For notational conve-
nience, 0

0 is assumed to be equal to 0 iff ~Fi = ~F ′
i = 0.

The kernel function based on this χ2 distance then is:

k(~F , ~F ′) = e−
1
D dist(~F , ~F ′), (4)

where D is an optional scalar to normalizes the distances [3].
Because the χ2 distance is already constrained to lie between
0 and 1, this normalization is unnecessary and we therefore
fix D to 1.

To use multiple input features, instead of relying on a single
feature, the kernel function is extended in a weighted fashion
for q features:

k({~F(1), ..., ~F(q)}, { ~F ′
(1), ..., ~F ′

(q)}) =

e
− 1Pq

j=1 wj

(Pq
j=1 wjdist(~F(j), ~F ′

(j))
)
, (5)

with wj the weight of the jth feature and ~F(j) the jth feature
vector. An example of the use of multiple features with weights
is the spatial pyramid [46, 47]. When using the spatial pyramid,
additional features are extracted for specific parts of the image.
For example, in a 2x2 subdivision of the image, feature vectors
are extracted for each image quarter with a weight of 1

4 for
each quarter. Similarly, a 1x3 subdivision consisting of three
horizontal bars, which introduces three new features (each with
a weight of 1

3). In this setting, the feature vector for the entire
image has a weight of 1.

For vector quantization, discussed in the previous section,
all input data and the resulting output fits into computer
memory. For kernel value precomputation, memory usage
is an important problem. For example, for a dataset with
50, 000 images, the input data is 12 GB and the output
data is 19 GB. Therefore, special care must be taken when
designing the implementation, to avoid holding all data in
memory simultaneously. We divide the processing into evenly
sized chunks. Each chunk corresponds to a square 1024x1024
subblock of the kernel matrix with all kernel function values,
i.e. a chunk computes the kernel function values between 1024
vectors ~F and 1024 vectors ~F ′. The algorithm is given in
pseudo code in Algorithm 2.

Algorithm 2 Compute Kernel Matrix Values with χ2 Distance
1: for every chunk of 1024 kernel matrix rows do
2: for every chunk of 1024 kernel matrix columns do
3: CurrentChunk ← 1024x1024 matrix with zeros
4: for feature j = 1 to q do
5: D ← distχ2(~F(j), ~F ′

(j)) between 1024 vectors
~F(j) and 1024 vectors ~F ′

(j)

6: CurrentChunk ← CurrentChunk + wjD
7: end for
8: for all elements p of CurrentChunk do
9: p← e

− 1Pq
j=1 wj

p

10: end for
11: Store CurrentChunk as part of the final kernel matrix
12: end for
13: end for

To implement the distχ2 function in algorithm 2, we find
that single precision is not accurate enough to sum many
numbers. Therefore, we use double precision on the CPU
with SSE instructions which can process 2 double precision
numbers at the same time. Because double precision com-
putations are 8 times slower than single precision on the
GTX260, we use a Kahan summation [44] instead of switching
to double precision on the GPU. For the CPU implementation,
the additional operations of the Kahan summation are more
expensive than switching to double precision.

7

IV. EXPERIMENTAL SETUP

In this section, we discuss the setup of our experiments. In
our first two experiments, we measure the speedup of our two
contributions: GPU vector quantization and GPU kernel value
precomputation. In the third experiment, instead of timing
just the improved components, we measure the classification
throughput of a complete visual categorization system. See
Figure 1 for the pipeline of such a complete system. Software
for the GPU-accelerated feature extraction will be released
on our website2, together with kernel value precomputation
software.

A. Experiment 1: Vector Quantization Speed

We measure the relative speed of two vector quantization
implementations: CPU and GPU versions of the vectorized
approach from section III-B. The CPU implementation is
SIMD-optimized. Measured times are the median of 25 runs;
an initial warm-up run is discarded to exclude initialization
effects. For the experiments, realistic data sizes are used, fol-
lowing the state-of-the-art [5]: a codebook of size m = 4, 000;
up to 20, 000 descriptors per image and descriptor lengths of
d = 128 (SIFT) and d = 384 (ColorSIFT).

Because the compute power of CPU architectures still
improves with every generation, we include two CPUs in our
comparison of CPU and GPU, to show the rate of development
in CPU compute speeds besides the increase in number of
cores. Specifically, the single-core Opteron 250 (2.4GHz) from
2005 and the quad-core Core i7 920 (2.66GHz) from 2009
are included. For the quad-core Core i7, results for both a
single-threaded and a multi-threaded CPU implementation are
reported. These are compared to a Geforce GTX260 GPU (27
cores). Timing results are reported per frame; for a real dataset
the times should be multiplied by the number of frames or
images in the set.

B. Experiment 2: Kernel Value Precomputation Speed

To measure the speed of kernel value computation, we com-
pare a CPU version and a GPU version based on the approach
from section III-C. We evaluate these implementations on the
same hardware as experiment 1.

To obtain timings results, we have chosen the large Me-
diamill Challenge training set of 30, 993 frames [48] with
realistic feature vector lengths. Times required to precompute
the kernel values are measured for different amounts of input
features: from a single feature (total feature vector length
4, 000) up to 10 features (total feature vector length 128, 000).
For a real system, the number of features might be even
higher [5, 10].

C. Experiment 3: Visual Categorization Throughput

After accelerating two components of the categorization
pipeline (see Figure 1) in the first two experiments, in this
experiment, we measure the throughput of the complete sys-
tem. The average time needed to classify a frame is referred

2http://www.colordescriptors.com

to as the throughput of the system. For categorizing large
datasets, the processing time required to push frames through
the complete categorization pipeline is important, because this
gives a good indication of the time needed to process the full
dataset. For the throughput experiment, a comparison is made
between the quad-core Core i7 920 CPU (2.66GHz) and the
Gefore GTX260 GPU (27 cores).

V. RESULTS

In this section, the results from the experiments listed in
section IV are discussed. We will investigate the speed of
vector quantization, the speed of precomputing kernel values
and finally the throughput of a complete visual categorization
system, with and without the GPU.

A. Experiment 1: Vector Quantization Speed

Figure 2 shows the vector quantization speeds for SIFT
descriptors using different hardware platforms and implemen-
tations. From the results, it is shown that vector quantization
on CPUs takes more time than on GPUs. The difference
between the fastest single-threaded CPU and the fastest GPU
is a factor of 13; both are using a vectorized implementation. If
the CPU uses a multi-threaded implementation, the difference
between the CPU and the GPU is a factor of 3.9. For a
typical number of SIFT descriptors per frame, 10,000, this
is the difference between 0.29s and 0.08s spent per image
in vector quantization. In the ColorSIFT results, we see the
same speedup: from 0.59s to 0.16s. When processing datasets
of thousands or even millions of images, this is an important
acceleration.

An interesting observation, based on the single-threaded
results, is that the CPU times can be used to roughly order
them by release date. The single-core 2005 Opteron takes
about 2.2 times longer than a single thread of a 2009 Core
i7 920.

For the GPU, we obtain 212 GLOPS, which equals 0.65
instructions per clock cycle per core. This result includes
the time it takes to transfer data between the CPU global
memory and the GPU global memory. Without transfer times,
performance would be 218 GLOPS. The optimized CUBLAS
matrix multiplication used inside vector quantization achieves
0.74 instructions per cycle. The theoretical 875 GLOPS of the
GPU is only reached when 2 instructions can be executed per
clock cycle, which is possible for a specific combined add-
multiply operation only. The computations use 70-80 GB/s
out of a possible 117 GB/s GPU memory bandwidth.

For the Core i7 CPU, we obtain 43 GFLOPS out of a
theoretical 100 GFLOPS for higher-clocked versions of this
quad-core CPU architecture. For the Core i7 920, the theo-
retical maximum is about 80 GFLOPS. We observed (results
not shown) that hyperthreading gives a speedup of at most
5 percent and sometimes decreases performance. Therefore,
hyperthreading was disabled in our experiments. The CPU
performance scales fairly well in terms of cores with the quad-
core version being up to 3.4 times faster than the single-core
version.

8

4

6

T
im

e
 P

e
r

Im
a

g
e

 (
s)

Experiment 1: Vector Quantization Timings for SIFT

CPU Opteron 250 (2,4GHz, 1 thread)

CPU Core i7 920 (2,66GHz, 1 thread)

CPU Core i7 920 (2,66GHz, 4 threads)

GPU Geforce GTX260 (27 cores)

8

Experiment 1: Vector Quantization Timings for ColorSIFT

0

2

4

6

300 600 1250 2500 5000 10000 20000

T
im

e
 P

e
r

Im
a

g
e

 (
s)

Number of SIFT Descriptors Per Image

Experiment 1: Vector Quantization Timings for SIFT

CPU Opteron 250 (2,4GHz, 1 thread)

CPU Core i7 920 (2,66GHz, 1 thread)

CPU Core i7 920 (2,66GHz, 4 threads)

GPU Geforce GTX260 (27 cores)

2

4

6

8

T
im

e
 P

e
r

Im
a

g
e

 (
s)

Experiment 1: Vector Quantization Timings for ColorSIFT

CPU Opteron 250 (2,4GHz, 1

thread)

CPU Core i7 920 (2,66GHz, 1

thread)

CPU Core i7 920 (2,66GHz, 4

threads)

GPU Geforce GTX260 (27 cores)

0

2

4

6

300 600 1250 2500 5000 10000 20000

T
im

e
 P

e
r

Im
a

g
e

 (
s)

Number of SIFT Descriptors Per Image

Experiment 1: Vector Quantization Timings for SIFT

CPU Opteron 250 (2,4GHz, 1 thread)

CPU Core i7 920 (2,66GHz, 1 thread)

CPU Core i7 920 (2,66GHz, 4 threads)

GPU Geforce GTX260 (27 cores)

0

2

4

6

8

300 600 1250 2500 5000 10000 20000

T
im

e
 P

e
r

Im
a

g
e

 (
s)

Number of ColorSIFT Descriptors Per Image

Experiment 1: Vector Quantization Timings for ColorSIFT

CPU Opteron 250 (2,4GHz, 1

thread)

CPU Core i7 920 (2,66GHz, 1

thread)

CPU Core i7 920 (2,66GHz, 4

threads)

GPU Geforce GTX260 (27 cores)

0

2

4

6

300 600 1250 2500 5000 10000 20000

T
im

e
 P

e
r

Im
a

g
e

 (
s)

Number of SIFT Descriptors Per Image

Experiment 1: Vector Quantization Timings for SIFT

CPU Opteron 250 (2,4GHz, 1 thread)

CPU Core i7 920 (2,66GHz, 1 thread)

CPU Core i7 920 (2,66GHz, 4 threads)

GPU Geforce GTX260 (27 cores)

Fig. 2. Vector quantization speeds for a varying number of SIFT descriptors
(top plot) or ColorSIFT descriptors (bottom plot). The difference between the
multi-threaded CPU and the GPU is a factor of 3.9. The difference between
the single-threaded CPU implementation and the GPU is a factor 13. The
single-threaded results of the quad-core Core i7 CPU are shown as a dashed
line, to indicate that it does not use all cores available.

In conclusion, the speedup through parallelization obtained
for vector quantization is an important acceleration when
processing large image datasets. When combined with GPU
versions of the other image feature extraction stages (see
Table I), even the most expensive feature can still be extracted
in less than 1 second per image.

B. Experiment 2: Kernel Value Precomputation Speed

Figure 3 shows the kernel value precomputation speeds
on different hardware platforms. The difference between a
single GTX260 and a single Opteron CPU is a factor 74! The
difference between a single thread of the more recent Core i7
CPU and the GTX260 GPU is a factor 37. When all threads
of the Core i7 are used, the difference is a factor 10. When

using a bag-of-words model with features computed for four
pyramid levels (1x1, 2x2, 3x3 and 4x4), e.g. , a total feature
vector length of 120, 000, this is the difference between 1360
minutes and 142 minutes. Again, the GPU architecture results
in a substantial acceleration.

The GPU achieves 349 GFLOPS including memory trans-
fers between the CPU global memory and the GPU global
memory, with 1.10 instructions per clock cycle per core.
Excluding memory transfers the GPU achieves 357 GFLOPS.
More importantly, the computation uses 85-97 GB/s out of a
possible 117 GB/s bandwidth to the GPU memory, showing
that the algorithm is both bandwidth-intensive and compute-
intensive. The multi-threaded SIMD-optimized CPU version
achieves 30 GFLOPS on the quad-core Core i7 920. However,
as noted in Section III-C, the CPU version uses double
precision for its computation, which limits the theoretical
GFLOPS of the Core i7 920 to 40 GFLOPS, instead of 80
GFLOPS for single precision computations.

C. Experiment 3: Visual Categorization Throughput

For categorizing large datasets, the average amount of time
required to classify a frame from start to finish is important.
This is commonly referred to as the throughput of the system.
As an example of a large real-world dataset, we again use the
Mediamill Challenge [48]. See Table III for an overview of
the throughput. To classify 12, 914 keyframes from the test
set takes 40.3 minutes when using the GPU, equal to 5.3
frames per second. This includes the time it takes to load
the frames, extract densely sampled SIFT features3, perform
vector quantization, compute kernel values and apply trained
models. When looking at the feature extraction and kernel
value computation separately, the feature extraction per frame
achieved a throughput of 12.3 frames per second (17.5 minutes
for all frames) and the kernel value precomputation with 30
993 training samples achieved 9.4 frames per second (22.8
minutes for all frames). Compared to the single-threaded CPU
version, which takes 11.5 hours to process these frames and
therefore runs at 0.31 frames per second, the speedup for the
complete pipeline is 17x. The multi-threaded CPU version,
running on a quad-core CPU, needs 3 hours 15 minutes to
process all frames, and is 3.6x faster than the single-threaded
CPU version. The GPU version is 4.8 times faster than the
quad-core CPU.

VI. OTHER APPLICATIONS

The speedups for vector quantization and computing kernel
values obtained using GPU processing can be applied to other
problems than visual categorization as well. In this section,
we will discuss how it applies to the k-means clustering
algorithm and to processing text with the bag-of-words model,
and how the faster processing can be used to improve visual
categorization accuracy.

3SIFT feature extraction is also performed on the GPU.

9

10000

20000

30000

40000

T
im

e
 (

s)

Experiment 2: Kernel Precomputation Timings

CPU Opteron 250 (2,4GHz, 1 thread)

CPU Core i7 920 (2,66GHz, 1 thread)

CPU Core i7 920 (2,66GHz, 4 threads)

GPU Geforce GTX260 (27 cores)

0

10000

20000

30000

40000

4000 8000 16000 32000 64000 128000

T
im

e
 (

s)

Total Feature Vector Length

Experiment 2: Kernel Precomputation Timings

CPU Opteron 250 (2,4GHz, 1 thread)

CPU Core i7 920 (2,66GHz, 1 thread)

CPU Core i7 920 (2,66GHz, 4 threads)

GPU Geforce GTX260 (27 cores)

Fig. 3. Timings of kernel value precomputation on different hardware platforms for various total feature vector lengths. The difference between a GTX260
and a single-core Opteron CPU is a factor 74. The difference between the more recent Core i7 920 CPU utilizing 4 threads and the GPU is a factor 10. For
reference, results of the Core i7 with only a single CPU thread are also shown (dashed line).

TABLE III
IN THIS TABLE, THE THROUGHPUT OF VISUAL CATEGORIZATION IS MEASURED USING THE MEDIAMILL CHALLENGE [48] DATASET. TIME

MEASUREMENTS ARE FOR CLASSIFYING 12914 FRAMES, FRAMES PER SECOND (FPS) LISTINGS ARE THE AVERAGE TIME PER FRAME. THE SPEEDUP FOR
THE GPU IS MEASURED AGAINST THE MULTI-THREADED CPU IMPLEMENTATION.

Visual Categorization Throughput
Operation CPU (1 thread) CPU (4 threads) GPU

Time (min) Framerate Time (min) Framerate Speedup Time (min) Framerate Speedup
Image Feature Extraction 99 2.2 fps 45.3 4.8 fps 2.2x 17.5 12.3 fps 2.6x
Compute Kernel Values/Apply Model 593 0.36 fps 150 1.4 fps 3.9x 22.8 9.4 fps 6.6x
Full Classification 692 0.31 fps 195.3 1.1 fps 3.6x 40.3 5.3 fps 4.8x

A. Application 1: k-means Clustering

The k-means clustering algorithm [49] is regularly used to
construct the codebook used within a categorization pipeline.
It is applicable to any real-valued set of data points and is one
of the most common clustering algorithms in use. The k-means
algorithm relies heavily on vector quantization. Once the set
of k clusters has been initialized, all data points will be vector
quantized against these k clusters. The data points are then
assigned to the closest cluster, and the clusters are updated
by computing the mean data value of all points assigned to
that cluster. These steps are repeated until the clusters do
not change anymore. Performing the vector quantization, i.e.
finding the closest cluster for each data point, is the most
expensive step in the k-means algorithm. When using the GPU
vector quantization of experiment 1, a single iteration of the
k-means algorithm took 3.4 seconds instead of 76 seconds,
i.e. a speedup of 22.

B. Application 2: Bag-of-Words Model for Text Retrieval

The bag-of-words model as used in visual categorization is
based on the original bag-of-words model as used for text.
It results in the same kind of feature vectors with frequency
counts of each ‘codeword’, where words are to be taken
literally for text. Due to the large number of words possible,
the feature vectors for documents can be very long. In the
UCI datasets repository [50], there are several examples of
textual bag-of-words datasets. The Enron e-mail collection, for
example, contains almost 40, 000 documents which together
contain 28, 000 unique words. The NYTimes news article

collection contains 300, 000 documents with over 100, 000
unique words. The precomputation of kernel values from
experiment 2 (to train a topic model based on annotations)
and/or the computation of χ2 distances (to e.g. cluster similar
documents) can be directly applied to this text data, i.e. a
speedup by a factor of 35.

C. Application 3: Multi-Frame Processing for Video Retrieval

The increased throughput for visual categorization has been
instrumental in our participation in the visual categorization
task of the TRECVID 2009 video retrieval benchmark [12].
This task has a test set with 280 hours of material in which 20
visual categories need to be identified. Instead of processing
only the keyframes in the test set (97,150), the improved
throughput made processing of up to 10 extra frames per
shot feasible, for a total of 1 million frames. When looking
at just the keyframe of a shot, there is a large chance that a
visual category is not visible in that specific frame. By looking
beyond the keyframes, more relevant frames can be identified
and accuracy can be improved. See Figure 4 for an overview
of accuracy results by including 1 to 10 additional frames. The
likelihood a visual category occurs in a shot is estimated by
either taking the maximum score of all frames in the shot or
the average score. From the results, it is clear that taking the
maximum score instead of the average gives better results. The
accuracy gained by including more frames becomes smaller
after 5 additional frames have been added, though the accuracy
does increase. The relative improvement due to processing
extra frames, while keeping all other components of the
system the same, is 29%: from 0.175 to 0.226. This is in

10

0,1

0,15

0,2

0,25

In
fe

rr
e

d
 m

e
a

n
 a

v
e

ra
g

e
 p

re
ci

si
o

n
NIST TRECVID 2009 Video Retrieval Benchmark

Baseline: keyframes only

0

0,05

0,1

0,15

0,2

0,25

1 2 3 4 5 6 7 8 9 10

In
fe

rr
e

d
 m

e
a

n
 a

v
e

ra
g

e
 p

re
ci

si
o

n

extra frames per shot processed

NIST TRECVID 2009 Video Retrieval Benchmark

Baseline: keyframes only

Accuracy with AVG fusion

Accuracy with MAX fusion

Fig. 4. The effect of multi-frame processing on the NIST TRECVID 2009
video retrieval benchmark [12], made possibly by the use of GPU computing.
This task has a test set with 280 hours of material in which 20 visual categories
need to be identified. The relative improvement due to processing extra frames
is 29%. The baseline and all additional frame results use the same visual
features and training procedures.

line with previous work in [51], where it was shown that
processing additional frames will improve accuracy of visual
categorization. In the official evaluation of the TRECVID
2009 visual categorization task, we obtained state-of-the-art
results using the GPU and multi-frame processing: the system
achieved the highest overall accuracy [10].

VII. CONCLUSIONS

This paper provides an efficiency analysis of a state-of-the-
art visual categorization pipeline based on the bag-of-words
model. In this analysis, two large bottlenecks were identified:
the vector quantization step in the image feature extraction and
the kernel value computation in the category classification. By
using a vectorized GPU implementation of vector quantization,
it is 3.9 times faster than when it is computed on a modern
quad-core CPU. For the classification, we exploit the intrinsic
property of kernel-based classifiers that only kernel values are
needed. By precomputing these kernel values, the parameter
tuning and model learning stages can reuse these values,
instead of computing them on the fly for every visual category
and parameter setting. Also, precomputing these kernel values
on the GPU instead of a quad-core CPU accelerates it by a
factor of 10. The latter GPU acceleration is applicable to both
the learning phase and the training phase. The speedups ob-
tained in the visual categorization pipeline are also applicable
to other problems, such as text retrieval and video retrieval.
Additionally, when the obtained speedup is used to process
extra video frames in a video retrieval benchmark, the accuracy
of visual categorization is improved by 29%.

Overall, by using a parallel implementation on the GPU,
classifying unseen images is 17 times faster than a single-
threaded CPU version, while giving the exact same results
for visual categorization. Compared to a multi-threaded CPU
implementation on a quad-core CPU, the GPU is 4.8 times
faster.

REFERENCES

[1] B. Huurnink, L. Hollink, W. van den Heuvel, and M. de Rijke, “Search
behavior of media professionals at an audiovisual archive: A transaction

log analysis,” Journal of the American Society for Information Science
and Technology, vol. 61, no. 6, pp. 1180–1197, June 2010.

[2] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach
to object matching in videos,” in IEEE International Conference on
Computer Vision, 2003, pp. 1470–1477.

[3] J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid, “Local features
and kernels for classification of texture and object categories: A com-
prehensive study,” International Journal of Computer Vision, vol. 73,
no. 2, pp. 213–238, 2007.

[4] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (VOC) challenge,” International
Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010.

[5] K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek, “Evaluating
color descriptors for object and scene recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1582–
1596, 2010.

[6] Y.-G. Jiang, J. Yang, C.-W. Ngo, and A. Hauptmann, “Representations
of keypoint-based semantic concept detection: A comprehensive study,”
IEEE Transactions on Multimedia, vol. 12, no. 1, pp. 42–53, 2010.

[7] M. Marszałek, C. Schmid, H. Harzallah, and J. van de Weijer, “Learning
object representations for visual object class recognition,” 2007, Visual
Recognition Challenge workshop, in conjunction with IEEE ICCV.
[Online]. Available: http://lear.inrialpes.fr/pubs/2007/MSHV07

[8] S.-F. Chang, J. He, Y.-G. Jiang, E. E. Khoury, C.-W. Ngo,
A. Yanagawa, and E. Zavesky, “Columbia university/VIREO-CityU/IRIT
TRECVID2008 high-level feature extraction and interactive video
search,” in Proceedings of the TRECVID Workshop, 2008.

[9] A. Gaidon, M. Marszałek, and C. Schmid, “The PASCAL visual object
classes challenge 2008 submission,” INRIA-LEAR, Tech. Rep., 2008.

[10] C. G. M. Snoek, K. E. A. van de Sande, O. de Rooij, B. Huurnink,
J. R. R. Uijlings, M. van Liempt, M. Bugalho, I. Trancoso, F. Yan,
M. A. Tahir, K. Mikolajczyk, J. Kittler, M. de Rijke, J. M. Geusebroek,
T. Gevers, M. Worring, D. C. Koelma, and A. W. M. Smeulders,
“The MediaMill TRECVID 2009 semantic video search engine,” in
Proceedings of the TRECVID Workshop, 2009.

[11] D. Wang, X. Liu, L. Luo, J. Li, and B. Zhang, “Video diver: generic
video indexing with diverse features,” in ACM International Workshop
on Multimedia Information Retrieval, 2007, pp. 61–70.

[12] A. F. Smeaton, P. Over, and W. Kraaij, “Evaluation campaigns and
TRECVid,” in ACM International Workshop on Multimedia Information
Retrieval, 2006, pp. 321–330.

[13] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[14] J. R. R. Uijlings, A. W. M. Smeulders, and R. J. H. Scha, “Real-time bag-
of-words, approximately,” in ACM International Conference on Image
and Video Retrieval, 2009.

[15] C.-C. Chang, Y.-C. Li, and J.-B. Yeh, “Fast codebook search algorithms
based on tree-structured vector quantization,” Pattern Recognition Let-
ters, vol. 27, no. 10, pp. 1077–1086, 2006.

[16] F. Moosmann, B. Triggs, and F. Jurie, “Fast discriminative visual
codebooks using randomized clustering forests,” in Neural Information
Processing Systems, 2006, pp. 985–992.

[17] F. J. Seinstra, J.-M. Geusebroek, D. Koelma, C. G. M. Snoek, M. Wor-
ring, and A. W. M. Smeulders, “High-performance distributed video
content analysis with parallel-horus,” IEEE Multimedia, vol. 14, no. 4,
pp. 64–75, 2007.

[18] N. Cornelis and L. Van Gool, “Fast scale invariant feature detection
and matching on programmable graphics hardware,” in IEEE Computer
Vision and Pattern Recognition Workshops, 2008.

[19] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “Feature tracking
and matching in video using programmable graphics hardware,” Ma-
chine Vision and Applications, 2007.

[20] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, 2008.

[21] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.
879–899, 2008.

[22] R. Bordawekar, U. Bondhugula, and R. Rao, “Believe it or not! multi-
core cpus can match gpu performance for flop-intensive application!”
IBM Thomas J. Watson Research Center, Tech. Rep. IBM-RC24982,
2010.

[23] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey, “Debunking the 100x GPU vs. CPU myth: an evaluation

11

of throughput computing on CPU and GPU,” SIGARCH Computer
Architecture News, vol. 38, no. 3, pp. 451–460, 2010.

[24] R. Vuduc, A. Chandramowlishwaran, J. W. Choi, M. E. Guney, and
A. Shringarpure, “On the limits of GPU acceleration,” in USENIX
Workshop on Hot Topics in Parallelism, 2010.

[25] T. Sharp, “Implementing decision trees and forests on a GPU,” in IEEE
European Conference on Computer Vision, 2008, pp. 595–608.

[26] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support vector ma-
chine training and classification on graphics processors,” in International
conference on Machine learning, 2008, pp. 104–111.

[27] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image retrieval: Ideas,
influences, and trends of the new age,” ACM Computing Surveys, vol. 40,
no. 2, pp. 1–60, 2008.

[28] D. G. Lowe, “Distinctive image features from scale-invariant keypoints.”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[29] K. Mikolajczyk and et al. , “A comparison of affine region detectors,”
International Journal of Computer Vision, vol. 65, no. 1-2, pp. 43–72,
2005.

[30] J.-M. Geusebroek, A. W. M. Smeulders, and J. van de Weijer, “Fast
anisotropic gauss filtering,” IEEE Transactions on Image Processing,
vol. 12, no. 8, pp. 938–943, 2003.

[31] H. Jégou, M. Douze, and C. Schmid, “Packing bag-of-features,” in IEEE
International Conference on Computer Vision, 2009.

[32] J. C. van Gemert, C. J. Veenman, A. W. M. Smeulders, and J.-M.
Geusebroek, “Visual word ambiguity,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 7, pp. 1271–1283, 2010.

[33] D. Cai, X. He, and J. Han, “Efficient kernel discriminant analysis via
spectral regression,” in IEEE International Conference on Data Mining,
2007, pp. 427–432.

[34] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector
machines, 2001, software available at http://www.csie.ntu.edu.tw/∼cjlin/
libsvm.

[35] T.-N. Do, V.-H. Nguyen, and F. Poulet, “Speed up SVM algorithm for
massive classification tasks,” in Advanced Data Mining and Applica-
tions, 2008, pp. 147–157.

[36] M. Garland, S. L. Grand, J. Nickolls, J. Anderson, J. Hardwick,
S. Morton, E. Phillips, Y. Zhang, and V. Volkov, “Parallel computing
experiences with CUDA,” IEEE Micro, vol. 28, no. 4, pp. 13–27, 2008.

[37] KhronosGroup, OpenCL website, 2010, available at http://www.khronos.
org/opencl/.

[38] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[39] J. Stratton, S. Stone, and W. mei Hwu, “MCUDA: An efficient im-
plementation of CUDA kernels for multi-core CPUs,” in Workshop on
Languages and Compilers for Parallel Computing, 2008.

[40] G. Diamos, A. Kerr, and M. Kesavan, “Translating GPU binaries
to tiered SIMD architectures with ocelot,” Center for Experimental
Research in Computer Systems, Tech. Rep., 2009.

[41] G. Diamos, “The design and implementation of ocelot’s dynamic bi-
nary translator from PTX to multi-core x86,” Center for Experimental
Research in Computer Systems, Tech. Rep., 2009.

[42] M. Hassaballah, S. Omran, and Y. B. Mahdy, “A review of simd
multimedia extensions and their usage in scientific and engineering
applications,” Computer Journal, vol. 51, no. 6, pp. 630–649, 2008.

[43] D. Chang, N. A. Jones, D. Li, and M. Ouyang, “Compute pairwise
euclidean distances of data points with GPUs,” in Intelligent Systems
and Control, 2008, pp. 278–283.

[44] W. Kahan, “Pracniques: further remarks on reducing truncation errors,”
Communications of the ACM, vol. 8, no. 1, p. 40, 1965.

[45] Nvidia, CUDA Programming Guide, 2010, available at http://www.
nvidia.com/CUDA.

[46] K. Grauman and T. Darrell, “The pyramid match kernel: Efficient
learning with sets of features,” Journal of Machine Learning Research,
vol. 8, pp. 725–760, 2007.

[47] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories.” in IEEE
Conference on Computer Vision and Pattern Recognition, vol. 2, 2006,
pp. 2169–2178.

[48] C. G. M. Snoek, M. Worring, J. C. van Gemert, J.-M. Geusebroek, and
A. W. M. Smeulders, “The challenge problem for automated detection of
101 semantic concepts in multimedia,” in ACM International Conference
on Multimedia, 2006, pp. 421–430.

[49] A. R. Webb, Statistical Pattern Recognition, 2nd Edition. John Wiley
& Sons, 2002.

[50] A. Asuncion and D. Newman, “UCI machine learning repository,”
2007. [Online]. Available: http://archive.ics.uci.edu/ml

[51] C. G. M. Snoek, M. Worring, J.-M. Geusebroek, D. C. Koelma, and F. J.
Seinstra, “On the surplus value of semantic video analysis beyond the
key frame,” in IEEE International Conference on Multimedia & Expo,
2005.

Koen van de Sande Koen E.A. van de Sande re-
ceived a BSc in Computer Science (2004), a BSc in
Artificial Intelligence (2004) and a MSc in Computer
Science (2007) from the University of Amsterdam,
The Netherlands. Currently, he is pursuing the PhD
degree at the University of Amsterdam. His research
interests include computer vision, visual catego-
rization, (color) image processing, statistical pattern
recognition and large-scale benchmark evaluations.
He is a co-organizer of the annual VideOlympics.
He is a student member of the IEEE.

Theo Gevers Theo Gevers is an Associate Pro-
fessor of Computer Science at the University of
Amsterdam, The Netherlands and a (part-time) full
Professor at the Computer Vision Center (UAB),
Barcelona, Spain. At the University of Amsterdam
he is a teaching director of the MSc of Artificial
Intelligence. He currently holds a VICI-award (for
excellent researchers) from the Dutch Organisation
for Scientific Research. His main research interests
are in the fundamentals of content-based image
retrieval, colour image processing and computer

vision specifically in the theoretical foundation of geometric and photometric
invariants. He is an associate editor for the IEEE Transactions on Image
Processing. He is co-chair of the Internet Imaging Conference (SPIE 2005,
2006), co-organizer of the First International Workshop on Image Databases
and Multi Media Search (1996), the International Conference on Visual
Information Systems (1999, 2005), the Conference on Multimedia & Expo
(ICME, 2005), and the European Conference on Colour in Graphics, Imaging,
and Vision (CGIV, 2012). He is guest editor of the special issue on content-
based image retrieval for the International Journal of Computer Vision (IJCV
2004) and the special issue on Colour for Image Indexing and Retrieval for
the journal of Computer Vision and Image Understanding (CVIU 2004). He
has published over 100 papers on colour image processing, image retrieval
and computer vision. He is program committee member of a number of
conferences, and an invited speaker at major conferences. He is a lecturer
of post-doctoral courses given at various major conferences (CVPR, ICPR,
SPIE, CGIV). He is member of the IEEE.

Cees Snoek Cees G.M. Snoek received the MSc
degree in business information systems (2005) and
the PhD degree in computer science (2005), both
from the University of Amsterdam, where he is cur-
rently a senior researcher in the Intelligent Systems
Lab. He was a visiting scientist at Carnegie Mellon
University in 2003 and a Fulbright Junior Scholar
at UC Berkeley in 2010-2011. His research inter-
ests include visual categorization, statistical pattern
recognition, social media retrieval, and large-scale
benchmark evaluations, especially when applied in

combination for video search. He has published more than 90 refereed book
chapters, journal, and conference papers in these fields and serves on the
program committees of several conferences. He is the lead researcher of
the award-winning MediaMill Semantic Video Search Engine, which is a
consistent top performer in the yearly NIST TRECVID evaluations. He is a
co-initiator and co-organizer of the annual VideOlympics, co-chair of the SPIE
Multimedia Content Access conference, the Multimedia Grand Challenge
at ACM Multimedia 2010 and a lecturer of postdoctoral courses given at
international conferences and summer schools. He received a young talent
(VENI) grant from the Dutch Organization for Scientific Research in 2008
and a Fulbright visiting scholar grant in 2010. He is a member of the IEEE.

