Segmentation as Selective Search for Object Recognition in ILSVRC2011

Koen van de Sande

Jasper Uijlings

Arnold Smeulders

Theo Gevers

Nicu Sebe

Cees Snoek

University of Amsterdam, University of Trento ILSVRC2011 - November 7th 2011

Object Recognition

- What is it?
 - → Classification (task #1)
- What is it + Where is it?
 - → Classification with localisation (task #2)

Exhaustive Search

Viola IJCV 2004 Dalal CVPR 2005 Felzenszwalb TPAMI 2010 Vedaldi ICCV 2009

- Logical first step, visits every location
- Imposes computational constraints on
 - #possible locations considered (coarse grid/fixed aspect ratio)
 - Evaluation cost per location (weak features/classifiers)
- Impressive results
- To go beyond them, need to be more sophisticated

Selective Search

- Selective search has been exploited convincingly for segmentation
- For segmentation, the emphasis is on finding few but good segments
 - 10-100 per image
 - Accurate delineation → contour detector
- For recognition
 - Once discarded, an object will never be found again
 - Appearance including nearby context more effective
- Use segmentation with different goal

Selective Search for Recognition

Design criteria

High recall

- Coarse locations are sufficient
 - ⇒ Bounding boxes
- Fast to compute
 - ⇒ Efficient low-level features
 - ⇒ <10s per image

Gu CVPR 2009

Selective Search: High Recall

Image is intrinsically hierarchical

 Segmentation at a single scale won't find all objects

Hypotheses based on hierarchical grouping

Hypotheses based on hierarchical grouping

Ground truth

Hypotheses based on hierarchical grouping

Initial segments from oversegmentation [Felzenszwalb2004]

Hypotheses based on hierarchical grouping

Group adjacent regions on color/texture cues

Hypotheses based on hierarchical grouping

Object hypotheses from all hierarchy levels

Example 1

Example 2

Selective Search: High Recall

Color cues work best

Texture cues work, color fails

 No single segmentation strategy works everywhere
 We need a set of complementary segmentation strategies

Evaluation of object hypotheses

- Standard Pascal VOC overlap criterion
- Correct if overlap normalized for size >= 50%

Recall is the % of objects for which there is a hypothesis with >=50% overlap

Multiple Complementary Color Spaces

- We diversify the set of segmentations: combine multiple initial segmentations and different color spaces
- Color spaces with complementary invariance properties: some include shadow/shading pixels in a segment, others do not
- Location hypotheses are class-independent

Selective Search on ILSVRC2011

- Apply to ILSVRC2011 train set
- Object hypotheses are class-independent

	ILSVRC2011 train
With bounding box annotations	315,525 images
Average #boxes/image	1,565
Average recall	98.5%

Recall not informative anymore...

Is recall@50%-overlap still the right measure?

×X×

Average Best Overlap Example

What does ~87.6% ABO look like?

Overlap 88.4%

Overlap 87.9%

Overlap 87.4%

... is high recall visible in results?

VOC2011 detection challenge - aeroplane

Task #1 - Classification

Task #1: Classification

- Bag-of-words system with configuration similar to VOC2008 participation
 - Dense sampling and Harris-Laplace keypoints
 - SIFT, RGB-SIFT, "X-ColorSIFT" (under submission at IJCV)
 - Spatial pyramid 1x1 and 1x3
 - Vector Quantization with hard assignment
- We have 1.3 million training images and 1000 objects this time around...

Van de Sande TMM 2011 Maji CVPR 2009

Training 1000 object classifiers

- Each object category has ~1,300 positive examples
- As negative examples: random 10% of the train set
- The same set of negatives for all categories
 ⇒ re-use big part of kernel matrix
- Compute kernel matrix on GPU: 10x faster than quadcore CPU (40x faster than single-core)
- Histogram Intersection Kernel with Fast Approximation
- Based on probabilistic output of LibSVM:
 - Select 5 objects with highest score per image
 ⇒ flat error 0.346

Task #2 – Classification with localisation

Localisation System Training

- Use positives and mirrored positives
- Use object hypotheses to create difficult initial negatives (at most 7,500)
- Add 2 iterations of false positives (from 4,000 images)

- Features: Bag-of-words, sample every pixel, SIFT, "X-ColorSIFT" and RGB-SIFT, pyramid up to level 3, codebook size 4096
- Histogram Intersection Kernel with Fast Approximation

Applying Object Localisation

- 100,000 test images × 1000 object detectors
 = 100M classifications
- Practical problem: deadline too close
- Each object occurs exactly 100 times
- Apply object detector only to:
 - Top-10 objects per image (in terms of classification likelihood)
 - Top-1000 images per object
 - Reduction to 1.24M classifications

ILSVRC 2011 Results

Classification: in the 5 labels selected for an image, is the correct label in there?

Task 1	Flat error	
Base	0.346 -	It is for 65.4% of the images
Reranked w/localisation	0.310	

Classification with localisation: in the 5 selected bounding boxes for an image, does it overlap >50% with ground truth box and is the box labeled correctly?

Task 2	Flat error	
Localisation	0.425	Just 8% error increase!

Conclusions

- Adopted segmentation as selective search strategy for object localisation:
 - High recall: >96% with ~1,500 locations
 - Coarse locations are sufficient: bounding boxes
 - Fast to compute: <10s per image
 - Class-independent
 - Enables the use of bag-of-words features
- Doing localisation on top of classification increases error rate by just 8%

Come visit poster 42 🗤

Segmentation as Selective Search for Object Recognition, ICCV 2011, K.E.A. van de Sande, J.R.R. Uijlings, T. Gevers, and A.W.M. Smeulders, Poster #42, Wednesday 17:20-20:00

