Segmentation as Selective Search for Object Recognition in ILSVRC2011

Koen van de Sande
Jasper Uijlings
Arnold Smeulders
Theo Gevers
Nicu Sebe
Cees Snoek

University of Amsterdam, University of Trento
ILSVRC2011 - November 7th 2011
Object Recognition

- What is it?
 - Classification (task #1)

- What is it + Where is it?
 - Classification with localisation (task #2)
Exhaustive Search

- Logical first step, visits every location
- Imposes computational constraints on
 - #possible locations considered
 (coarse grid/fixed aspect ratio)
 - Evaluation cost per location
 (weak features/classifiers)
- Impressive results
- To go beyond them, need to be more sophisticated

Viola IJCV 2004
Dalal CVPR 2005
Felzenszwalb TPAMI 2010
Vedaldi ICCV 2009
Selective Search

- Selective search has been exploited convincingly for segmentation
- For segmentation, the emphasis is on finding few but good segments
 - 10-100 per image
 - Accurate delineation ➔ contour detector
- For recognition
 - Once discarded, an object will never be found again
 - Appearance including nearby context more effective
- Use segmentation with different goal
Selective Search for Recognition

- Design criteria
 - High recall
 - Coarse locations are sufficient
 - Bounding boxes
 - Fast to compute
 - Efficient low-level features
 - <10s per image
Selective Search: High Recall

- Image is intrinsically hierarchical

- Segmentation at a single scale won’t find all objects
Selective Search: Approach

- Hypotheses based on hierarchical grouping
Selective Search: Approach

- Hypotheses based on hierarchical grouping

Ground truth
Selective Search: Approach

- Hypotheses based on hierarchical grouping

Initial segments from oversegmentation [Felzenszwalb2004]
Selective Search: Approach

- Hypotheses based on hierarchical grouping

Group adjacent regions on color/texture cues
Selective Search: Approach

- Hypotheses based on hierarchical grouping

Object hypotheses from all hierarchy levels
Example 2
Selective Search: High Recall

- No single segmentation strategy works everywhere
- We need a set of complementary segmentation strategies

Color cues work best

Texture cues work, color fails
Evaluation of object hypotheses

- Standard Pascal VOC overlap criterion
- Correct if overlap normalized for size $\geq 50\%$

- Recall is the % of objects for which there is a hypothesis with $\geq 50\%$ overlap
Multiple Complementary Color Spaces

- We diversify the set of segmentations: combine multiple initial segmentations and different color spaces.
- Color spaces with complementary invariance properties: some include shadow/shading pixels in a segment, others do not.
- Location hypotheses are class-independent.

VOC2007 test

1,536 windows/image
96.7% recall
Selective Search on ILSVRC2011

- Apply to ILSVRC2011 train set
- Object hypotheses are class-independent

<table>
<thead>
<tr>
<th></th>
<th>ILSVRC2011 train</th>
</tr>
</thead>
<tbody>
<tr>
<td>With bounding box annotations</td>
<td>315,525 images</td>
</tr>
<tr>
<td>Average #boxes/image</td>
<td>1,565</td>
</tr>
<tr>
<td>Average recall</td>
<td>98.5%</td>
</tr>
</tbody>
</table>

- Recall not informative anymore…
Is recall@50%-overlap still the right measure?

Recall 98.5%
Missed 1.5%

Average best overlap 87.6% ABO
Average Best Overlap Example

- What does ~87.6% ABO look like?

Overlap 88.4%
Overlap 87.9%
Overlap 87.4%

... is high recall visible in results?
VOC2011 detection challenge - cat

High recall
Task #1 - Classification
Task #1: Classification

- Bag-of-words system with configuration similar to VOC2008 participation
 - Dense sampling and Harris-Laplace keypoints
 - SIFT, RGB-SIFT, “X-ColorSIFT” (under submission at IJCV)
 - Spatial pyramid 1x1 and 1x3
 - Vector Quantization with hard assignment

- We have 1.3 million training images and 1000 objects this time around…

Visit http://www.colordescriptors.com
Training 1000 object classifiers

- Each object category has ~1,300 positive examples
- As negative examples: random 10% of the train set
- The same set of negatives for all categories
 ⇒ re-use big part of kernel matrix
- Compute kernel matrix on GPU: 10x faster than quad-core CPU (40x faster than single-core)
- Histogram Intersection Kernel with Fast Approximation
- Based on probabilistic output of LibSVM:
 ● Select 5 objects with highest score per image
 ⇒ flat error 0.346
Task #2 – Classification with localisation
Localisation System Training

- Use positives and mirrored positives
- Use object hypotheses to create difficult initial negatives (at most 7,500)
- Add 2 iterations of false positives (from 4,000 images)

Features: Bag-of-words, sample every pixel, SIFT, “X-ColorSIFT” and RGB-SIFT, pyramid up to level 3, codebook size 4096

Histogram Intersection Kernel with Fast Approximation
Applying Object Localisation

- 100,000 test images \times 1000 object detectors = 100M classifications
- Practical problem: deadline too close
- Each object occurs exactly 100 times
- Apply object detector only to:
 - Top-10 objects per image (in terms of classification likelihood)
 - Top-1000 images per object
 - Reduction to 1.24M classifications
ILSVRC 2011 Results

- Classification: in the 5 labels selected for an image, is the correct label in there?

<table>
<thead>
<tr>
<th>Task 1</th>
<th>Flat error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>0.346</td>
</tr>
<tr>
<td>Reranked w/localisation</td>
<td>0.310</td>
</tr>
</tbody>
</table>

 It is for 65.4% of the images

- Classification with localisation: in the 5 selected bounding boxes for an image, does it overlap >50% with ground truth box and is the box labeled correctly?

<table>
<thead>
<tr>
<th>Task 2</th>
<th>Flat error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localisation</td>
<td>0.425</td>
</tr>
</tbody>
</table>

 Just 8% error increase!
Conclusions

- Adopted segmentation as selective search strategy for object localisation:
 - High recall: >96% with ~1,500 locations
 - Coarse locations are sufficient: bounding boxes
 - Fast to compute: <10s per image
 - Class-independent
 - Enables the use of bag-of-words features

- Doing localisation on top of classification increases error rate by just 8%

Come visit poster 42

Segmentation as Selective Search for Object Recognition, ICCV 2011, K.E.A. van de Sande, J.R.R. Uijlings, T. Gevers, and A.W.M. Smeulders, Poster #42, Wednesday 17:20-20:00