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Abstract

In this paper we summarize our TRECVID 2013 [15] video
retrieval experiments. The MediaMill team participated
in four tasks: concept detection, object localization, in-
stance search, and event recognition. For all tasks the
starting point is our top-performing bag-of-words system
of TRECVID 2008-2012, which uses color SIFT descrip-
tors, average and difference coded into codebooks with spa-
tial pyramids and kernel-based machine learning. New this
year are concept detection with deep learning, concept detec-
tion without annotations, object localization using selective
search, instance search by reranking, and event recognition
based on concept vocabularies. Our experiments focus on es-
tablishing the video retrieval value of the innovations. The
2013 edition of the TRECVID benchmark has again been
a fruitful participation for the MediaMill team, resulting in
the best result for concept detection, concept detection with-
out annotation, object localization, concept pair detection,
and visual event recognition with few examples.

1 Task I: Concept Detection

Our concept detection approach builds on previous edi-
tions of the MediaMill semantic video search engine [19,20].
New this year is our convolutional neural network and con-
cept detection without annotation. Since deep learning is
critically dependent on labeled examples and suffers from
noisy and incomplete annotations, as common in TRECVID
[1,18], we manually extended the collaborative annotations.

Color Difference Coding Our baseline concept detection
system uses a bag-of-words with color point descriptors only.
For point sampling we rely on dense sampling, with an in-
terval distance of six pixels and sampled at multiple scales.
We used a spatial pyramid of 1x1 and 1x3 regions in our ex-
periments. We used a mixture of SIFT, TSIFT, and C-SIFT
descriptors [23]. We compute the descriptors around points
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obtained from dense sampling, and reduce the dimensional-
ity with principal component analysis. We encode the color
descriptors with the aid of difference coding using Fisher
vectors with a Gaussian Mixture Model codebook [17]. For
efficient storage we perform product quantization [6] on the
features. The classifier is a linear SVM, which we apply on
either the keyframe or on a maximum of six frames per shot.

Convolutional Neural Network Our deep learning concept
detection system is a convolutional neural network with 8
layers with weights [8]. The input is raw pixel data, the
output are concept scores. The network is trained using
error back propagation. However, in contrast to ImageNet,
there are too few labeled examples in the TRECVID SIN
2013 set for deep learning to be effective. We studied how
additional examples from ImageNet [2] can be exploited to
better train our networks. To improve the results, we took a
network that had already been trained on ImageNet and re-
trained it for the 60 TRECVID 2013 SIN concepts. Similar
to our color difference coding baseline we apply the network
on either the keyframe or on a maximum of six frames per
shot.

Learning from Social Media Learning video concept de-
tectors from social-tagged media sources, such as Flickr im-
ages and YouTube videos, has the potential to address a
wide variety of concept queries for video search. The focus
of our TRECVID 2013 investigations for the no-annotation
task are experiments with a video search engine which is
capable of learning concept detectors from social media [7].
For each of the 60 concepts defined in the Semantic In-
dexing task we harvest positive examples from Flickr using
two strategies (see runs below.) Our total pool is 1 million
images for tag relevance training. The training set for con-
cept detectors is 200k consisting of images tagged with the
60 concepts. We compute tag relevance on the 200k using
the 1 million for neighbor voting [9]. We subselect rele-
vant positive and negatives from the 200k to a maximum of
4,000 top-ranked examples [7]. The negatives were sampled
from the other 59 categories of the 200k set using negative
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Figure 1: Comparison of MediaMill video concept detection experiments with other concept detection approaches in the TRECVID 2013
Semantic Indexing task.

bootstrap [10]. As the implementation for the final concept
detectors we rely on color difference coding.

1.1 Submitted Runs with Annotation

We submitted four runs in the regular SIN task and two
runs in the concept pair task. We summarize our regular
SIN task submission in Figure 1.

UvA-Jon is our baseline run. It is based on color difference
coding with multiple frames. It achieves an mAP of 0.286
and is the best performer for 2 out of 38 concepts. This run
came out forth in terms of overall system performance.

UvA-Bran is our deep learning baseline based on multiple
keyframe per shot. It achieves an mAP of 0.296 and is the
best performer for 4 out of 38 concepts. While deep learning
outperforms the more traditional color difference coding the
overall difference is small. We also observed this during our
development experiments which motivated us for a hybrid
approach.

UvA-Arya is our hybrid system that fuses deep learning
and color difference coding by a simple weighted average ob-
tained by cross-validation. This run is based on classifying
single keyframes per shot only. It achieves an mAP of 0.300
and is the best performer for 6 out of 38 concepts. Although

this hybrid system relies on a single keyframe only it is still
able to outperform both the multi-frame deep learning and
color difference coding system.

UvA-Robb is similar to UvA-Arya, but it is based on
multiple-frames per shot. It achieves an mAP of 0.321 and
is the best performer for 15 out of 38 concepts. As expected
the multi-frame variant adds an additional jump in accu-
racy and ends as first system in terms of overall mAP. This
run also formed the basis for our runs in the concept pair
task, where we simply used a combination of concept scores
by sum (UvA-Rickon) or multiplication (UvA-Shaggydog).
These runs came out second and first, overall, in the concept
pair detection task.

1.2 Submitted Runs without Annotation

The no annotation task has two versions, type−E to collect
training data, and type − F to collect training data using
a query text built manually from the concept name and
definition. We submit one run for each type.

UvA-Sansa In this type − E run we harvest the positive
examples by querying the Flickr API using query text auto-
matically derived from the concept name and definition. For
concepts not commonly appearing as tags in Flickr, like An-
chorperson and Quadruped, we rely on query expansion with



Wikipedia as a source. Within the no-annotation type− E
condition, this run obtains the best AP for 32 out of 38
concepts and ranks first overall with an mAP of 0.048.

UvA-Lady In this type−F run we simply rely on the con-
cept name and definition and manually define a set of key-
words to query the Flickr API. Within the no-annotation
type−F condition, this run obtains the best AP for 34 out
of 38 concepts and ranks first overall with an mAP of 0.046.

2 Task II: Object Localization

We perceive object localization in video as a supervised
learning problem. So we require bounding box annotations
for objects of interest. We have refined a subset of the global
image annotations for 10 (global) concepts to object-level by
adding their bounding boxes.

Selective Search Rather than relying on exhaustive scan-
ning of the image with boxes at multiple scales and aspect
ratio’s, we prefer (fast) selective search by Uijlings et al . [22].
Selective search generates a restricted set of about 2,000
object box hypothesis per image, using several hierarchical
segmentations, which are independent of the object cate-
gory. Since the number of boxes is restricted we can exploit
computationally expensive bag-of-words features. For point
sampling we rely on dense sampling at multiple scales. We
used a fine spatial pyramid and a mixture of SIFT, TSIFT,
and C-SIFT descriptors [23]. We compute the descriptors
around points obtained from dense sampling, and reduce
them all with principal component analysis. We encode
the color descriptors with the aid of hard assignment with
a codebook of 4,096 elements. For efficient storage we per-
form product quantization [6] on the features. The classifier
is an SVM with fast intersection kernel approximation pro-
posed by Maji et al . [11]. Following the convention from
the object detection literature we perform negative mining
of hard examples [22].

2.1 Submitted Runs

UvA-Snow This run is based on the ranking provided by
UvA-Jon, using color difference coding only. In the top-
1,000 shots we localize objects. It ranks 4th in terms of the
iframe f-score metric.

UvA-Summer This run is based on the ranking provided
by UvA-Bran using deep learning only. In the top-1,000
shots we localize objects. This run obtains the best overall
iframe precision and fscore, as well as the highest mean-pixel
fscore, recall and precision.

UvA-Nymeria This run is based on the ranking provided
by UvA-Arya, which combined color difference coding with
deep learning on keyframe level. In the top-1,000 shots we
localize objects. This one has the lowest iframe recall among

all our four runs, indicating once more the importance of
multi-frame sampling for video.

UvA-Greywind This run is based on the ranking provided
by UvA-Robb, which is similar to UvA-Nymeria but then
with a maximum of 6 frames per shot analyzed. In the top-
1,000 shots we localize objects. This run has the highest
iframe recall among all our four submissions.

3 Task III: Instance Search

We address instance search with a two-step procedure. The
sampled video frames, with a sampling rate of 2 frames
per shot, are first ranked by a global search which con-
siders the entire image in the analysis. The initial ranking
is then refined by a localized search which evaluates per
frame many bounding boxes holding candidates for the tar-
get. The boxes are generated using selective search [22]. We
apply the reranking step on the top 100,000 frames of the
initial result. We consider the maximum frame score as the
shot score and rank the video shots for the final evaluation.

For the global search, we use Fisher vectors with a Gaus-
sian Mixture Model vocabulary containing 256 components
[17]. The Fisher vectors are reduced to 4,096 dimensions
with principal component analysis. For the localized analy-
sis, we adopt a much larger vocabulary with 20,000 clusters,
and do not apply any dimension reduction. The combina-
tion of localized search and difference coding with large vo-
cabularies poses heavy demands on the memory and com-
putation. To handle this, we use a point-indexed repre-
sentations and decomposed similarity measures, achieving
efficient storage and evaluation of many boxes. We refer to
the work of Tao et al . [21] for the details on the efficient
instance search.

3.1 Submitted Runs

UvA-Shifu This run is purely based on the global search.
We consider two settings of extracting local descriptors, one
with SIFT around interest points detected by Hessian-Affine
detector [16] and one with SIFT, TSIFT and C-SIFT around
densely sampled points. The two sets are fed into the Fisher
vector separately. Finally, the frame score is a weighted sum
of two scores. This run has an mAP of 0.052.

UvA-Bajie This run only considers interest points with
SIFT. Reranking is applied. This run scores an mAP of
0.108.

UvA-Shaseng This run is similar to the UvA-Bajie, but
learns a classifier instead of querying by similarity, in both
the global search and localized search. A linear SVM clas-
sifier is learned using the provided query frames as positive
examples and randomly sampled 100,000 frames as nega-
tive. We blindly consider the sampled frames as negative



without manual checking. This run achieves an mAP of
0.113.

UvA-Wukong This run is similar to UvA-Shaseng, but
here we use both interest points and densely sampled points
as in UvA-Shifu for the global search to get the initial re-
sult. The reranking is the same as UvA-Shaseng. This run
scores an mAP of 0.127.

4 Task IV: Event Recognition

Our event recognition system is founded on two representa-
tions, one based on low-level multimedia features and one
based on a representation of concepts [4,12,13]. In addition,
within the SESAME team [3, 14], we also investigate to-
gether with SRI International and the University of South-
ern California several additional multimedia approaches to
video event detection.

Multimedia Encoding The system computes a product
quantized Fisher vector [6,17] of SIFT, TSIFT, and C-SIFT
descriptors [23] on two frames per second. The Fisher vec-
tors are averaged per video to obtain a single feature vector
per video. As our audio features, we extract Mel-frequency
cepstral coefficients (MFCCs) over a 10ms window. The
derivatives of the MFCCs and the second derivative are also
computed. The MFCC features are difference coded with
Fisher vectors using a Gaussian Mixture Model. As mo-
tion features we compute MBH [24] and HOG descriptors
along the motion trajectories. Fisher encoding is used to ag-
gregate them followed by power normalization as in [5]. A
linear SVM is trained for each feature and event and applied
on the videos to obtain confidence scores.

Semantic Encoding The systems uses 346 concept detec-
tors from the TRECVID 2012 SIN task and 1,000 concept
detectors from the 2012 ImageNet Large Scale Visual Recog-
nition Challenge to classify two frames per second using the
Fisher vector of SIFT, TSIFT, and C-SIFT descriptors. We
use three variants to encode the concepts per video, ap-
proach one is based on simple averaging [4], approach two
is based on difference coding, approach three is based on
concept selection via cross entropy [12, 13]. We also exper-
imented with a new semantic fusion approach. To learn
events we rely on an SVM with χ2 kernel.

4.1 Submitted Runs

Pre-Specified 100Ex This run combines low-level audio
and motion features and semantic encoding with manifold
difference coding and semantic fusion. It scores an mAP of
0.281. Our audio-only and visual-only variants score 0.059
and 0.260 respectively.

Pre-Specified 10Ex This run is similar to the 100ex con-
dition, but here we add concept selection into the fusion.
It scores an mAP of 0.015. Our audio-only and visual-only
variants score 0.026 and 0.140 respectively. Overall, this
run came out second in the Pre-Specified 10Ex condition,
and is the best visual-only system.

AdHoc 100Ex This run maps the low-level audio, visual,
motion features and the difference coded concepts into a
mid-level semantic representation to perform fusion at the
semantic level. It scores an mAP of 0.253. Our audio-only
and visual-only variants score 0.056 and 0.238 respectively.

AdHoc 10Ex This run is similar to the AdHoc 100Ex con-
dition, but uses less examples. It scores an mAP of 0.143.
Our audio-only and visual-only variants score 0.027 and
0.137 respectively. Overall, this run came out third in the
adHoc 10Ex condition, and is the best visual-only system
without relevance feedback.

5 Highlights

We summarize the highlights of our 2013 TRECVID partic-
ipation in Figure 2.
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[1] S. Ayache and G. Quénot. Video corpus annotation using
active learning. In ECIR, 2008.

[2] A. Berg, J. Deng, S. Satheesh, H. Su, and F.-F. Li. Im-
ageNet large scale visual recognition challenge 2011, 2011.
http://www.image-net.org/challenges/LSVRC/2011.

[3] R. B. Bolles et al. The 2013 SESAME multimedia event
detection and recounting system. In TRECVID Workshop,
2013.

[4] A. Habibian, K. E. A. van de Sande, and C. G. M. Snoek.
Recommendations for video event recognition using concept
vocabularies. In ICMR, 2013.

http://www.image-net.org/challenges/LSVRC/2011


0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

System Runs

M
e
a
n

 I
n

fe
rr

e
d

 A
v
e
ra

g
e
 P

re
c
is

io
n

TRECVID 2013 Concept Detection Results

 

 
94 other concept detections

MediaMill concept detections

(a) Concept Detection

0 2 4 6 8 10 12 14 16 18 20 22
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

System Runs

M
e

a
n

 I
n

fe
rr

e
d

 A
v

e
ra

g
e

 P
re

c
is

io
n

TRECVID 2013 Concept Pair Detection

 

 
19 other concept pair detections

MediaMill concept pair detections

(b) Concept Pair Detection

1 2 3 4 5 6 7 8
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

System Runs

M
e

a
n

 I
n

fe
rr

e
d

 A
v

e
ra

g
e

 P
re

c
is

io
n

TRECVID 2013 Concept Detection without Annotation Results

 

 
6 other concept detections without annotation

MediaMill concept detections without annotation

(c) Concept Detection without Annotation

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

System Runs

iF
ra

m
e

 F
−

S
c

o
re

TRECVID 2013 Object Localization Results

 

 
5 other object localizations

MediaMill object localizations

(d) Object Localization

1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

System Runs

M
e
a
n

 A
v
e
ra

g
e
 P

re
c
is

io
n

TRECVID 2013 Visual Event Detection with 10 examples

 

 
MediaMill visual event recognition

8 other visual event recognitions

(e) Visual Event Recognition with ten examples

Figure 2: Comparison of MediaMill video retrieval experiments with other approaches in the TRECVID 2013 benchmark for (a) concept
detection, (b) concept pair detection, (c) concept detection without annotation, (d) object localization, and (e) visual event recognition
with only ten examples. MediaMill is best overall performer for all five tasks.
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