
Coloring Concept Detection in Video

using Interest Regions

Koen Erik Adriaan van de Sande



2



Coloring Concept Detection in Video

using Interest Regions

Doctoraal Thesis Computer Science

specialization: Multimedia and Intelligent Systems

Koen Erik Adriaan van de Sande

ksande@science.uva.nl

Under supervision of:

Prof. Dr. Theo Gevers

and

Dr. Cees G.M. Snoek

March 12, 2007



4



Abstract

Video concept detection aims to detect high-level semantic information present in video.
State-of-the-art systems are based on visual features and use machine learning to build
concept detectors from annotated examples. The choice of features and machine learning
algorithms is of great influence on the accuracy of the concept detector. So far, intensity-
based SIFT features based on interest regions have been applied with great success
in image retrieval. Features based on interest regions, also known as local features,
consist of an interest region detector and a region descriptor. In contrast to using
intensity information only, we will extend both interest region detection and region
description with color information in this thesis. We hypothesize that automated concept
detection using interest region features benefits from the addition of color information.
Our experiments, using the Mediamill Challenge benchmark, show that the combination
of intensity features with color features improves significantly over intensity features
alone.
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1 Introduction

In the digital age we live in, more and more video data becomes available. Television
channels alone create thousands of hours of new video content each day. Due to the sheer
volume of data, it is impossible for humans to get a good overview of the data available.
Retrieving specific video fragments inside a video archive is only possible if one already
knows where to search for or if textual descriptions obtained from speech transcripts or
social tagging are available. Video retrieval can be applied to video collections on the
internet, such as YouTube [53] and Yahoo Video [52], to news video archives, to feature
film archives, etc. Currently, the search capabilities offered by these video collections
are all based on text. The addition of text by humans is very time consuming, error
prone and costly and the quality of automatic speech recognition is poor. Contrary to
the text modality, the visual modality of video is always available.

Unfortunately the visual interpretation skills of computers are poor when compared
to humans. However, computers are experts in handling large amounts of binary data.
Computers can decode video streams into individual video frames and compute statistics
over them, but there is a big gap between the machine description ‘this frame contains
a lot of green’ and the soccer match that humans see. To associate high level semantic
concepts such as soccer to video data, we need to bridge the semantic gap. The semantic
gap has been defined by Smeulders et al [38] as follows:

“The semantic gap is the lack of coincidence between the information that machines
can extract from the visual data and the interpretation that the same data have for a
user in a given situation.”

State-of-the-art systems in both image retrieval [48, 18, 54] and video retrieval [33]
use machine learning to bridge the gap between features extracted from visual data
and semantic concepts. Semantic concepts are high-level labels of the video content.
Systems learn semantic concept detectors from features. The accuracy of the concept
detector depends on the feature used, the machine learning algorithm and the number
of examples. The feature is one of the building blocks of a concept detector and its
choice is very important for performance.

In concept-based image retrieval, SIFT features [21] based on interest regions are
state-of-the-art [54]. These features consist of an interest region detector and a region
descriptor. However, both components operate on intensity information only: they com-
pletely discard the color information present. The question arises why color information
is neglected. We hypothesize:

Automated concept detection using interest region features benefits from the addition
of color information.

Our goal is to extend both interest region detection and interest region description
with color. We evaluate the SIFT region descriptor and color region descriptors. Criteria
for selecting the descriptors include invariance against variations in light intensity, illu-
mination color, view geometry, shadows and shading. If the descriptor used is invariant
to a condition, then the concept can be detected even if the condition changes. We com-
pute the descriptors over either entire video frames or over interest regions. The former
are called global features, while the latter are local features. Depending on the region
over which we compute descriptions, we can achieve invariance against scale changes,
rotation or object position changes. For example, when the position of an object in
the scene changes, the task of learning a concept detector is simplified if the feature
vector remains similar. For local features, we have both an intensity interest region
detector and a color-extended interest region detector. Furthermore, we investigate how
to best aggregate the descriptors of many interest regions into a single feature vector.
Finally, we investigate whether combinations of features provide benefits over individ-
ual features. We perform our large-scale evaluation of visual features using 85 hours of
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video from the Mediamill Challenge [42], a benchmark for automated semantic concept
detection.

The organization of this thesis is as follows. In chapter 2, we give an overview of
related work. In chapter 3, we provide the necessary background for our generic concept
detection framework, discussed in chapter 4. In chapter 5, we provide implementation
details of our concept detection system. In chapter 6, we describe our experimental
setup. In chapter 7, we show the results of our system. Finally, in chapter 8, we draw
conclusions and provide directions for future research.
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2 Related work

In this chapter, we will discuss research related to automatic semantic concept detection.
Concept detection has already been extensively studied in the field of Content-Based
Image Retrieval (CBIR), where concepts are referred to as categories. In section 2.1,
we discuss the datasets and methods used in CBIR. In section 2.2, we compare this to
work in the video retrieval field. Finally, in section 2.3, we conclude with the rationale
for our work on concept detection in video.

2.1 Content-Based Image Retrieval

The field of Content-Based Image Retrieval studies, amongst others, the application of
computer vision in the context of image retrieval. Then, the image retrieval problem
corresponds to the problem of searching for digital images in datasets. Because this
thesis focuses on the detection of concepts, other important issues of CBIR, such as
visualization, image databases, etc. are beyond the scope of this thesis and will not be
discussed here.

Content-Based Image Retrieval systems tend to follow a common scheme. First,
a description of every image in the dataset is computed. A description is a concise
representation of the image contents, typically taking the form of a numeric feature
vector. Second, these descriptions are indexed to speed up the search process. Third,
the description of an unseen image is computed. Unseen images can be assigned to a
category depending on which categories similar descriptions come from.

We perceive the task of assigning a category to an unindexed image as a machine
learning problem: Given a number of feature vectors (descriptions of images) with corre-
sponding class labels (categories), the aim is to learn a classifier function which estimates
the category of unseen feature vectors.

One of the most important properties of image descriptions for robust retrieval is
invariance to changes in imaging conditions. For example, after rotation or scaling of
the object in view, the image of the object should still be retrieved. Moreover, more
complex imaging transformations such as object position and viewpoint changes should
be handled. Other possible changes are photometric changes (light intensity, color of
the light source, etc) and object shape changes. Different degrees of invariance can be
achieved for variations in imaging conditions. However, increased invariance comes at
the cost of reduced discriminability [12]. For example, for an image description which
is invariant for the color of the light source it will be difficult to distinguish between a
room with a white light source and a room with a red light source.

Because we perceive CBIR as a machine learning task, the classification scheme only
applies when annotations for the original dataset are available. Methods which do not
require annotations are unsupervised methods. These methods find clusters of similar
items in a dataset. However, further human interpretation of these clusters is needed,
because they do not assign semantic labels to the images. For example, the Query-
by-Example retrieval method finds items similar to given examples, but these items
need to be judged by a human. In combination with visualization tools, unsupervised
methods are very useful for analysis of the nature of image descriptions. Depending on
the description used, different images will be clustered together.

2.1.1 Datasets

To evaluate results in the CBIR field, many image datasets have been generated. Because
the focus is on concept detection, only datasets are discussed which divide the images
into different concept categories. In table 1 several datasets and their properties are
listed.
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Name # images # concepts Properties
Xerox7 [51] 1,776 7 highly variable pose and background clutter,

large intra-class variability
CalTech6 [8] 4,425 6 background set without concepts available,

same pose within an object class, object
prominently visible near image center

PASCAL dataset [5] 2,239 4 object location annotations available, multi-
ple instances per image allowed

CalTech101 [7] 8,677 101 little or no clutter, objects tend to be cen-
tered and have similar pose

Corel photo stock
(commercial)

16,499 89 high quality images, variable poses, low
background clutter

Amsterdam Library
of Object Images
(ALOI) [11]

110,250 1000 objects photographed in different poses un-
der varying lighting conditions, objects are
centered, black background

Table 1: Concept-based datasets from content-based image retrieval.

The image datasets listed, except the Corel and ALOI, consist of only several thou-
sands of images. Compared to the sizes of real-world image collections, they are relatively
small. In fact, the datasets have been designed to evaluate ‘desired’ invariance proper-
ties of new descriptors. Because of this, some of the datasets impose certain conditions
on the images (objects in similar pose, no background, object is centered, professional
photography, etc). In real-world image datasets, these conditions are not always met.

Due to the high effort involved in the construction of datasets, automatic construction
of datasets from image search engine results has been investigated [9, 37]. The name
of a concept is used as a search query to obtain images for that concept. However, the
datasets constructed using these methods contain many false positives.

2.1.2 Image indexing

Image descriptions can be created from various parts of the image. Global descrip-
tions are created over the entire image. Partition descriptions divide the image into a
(non-)overlapping grid of rectangular windows. Interest region descriptions (also known
as local descriptions) are computed over the area surrounding salient points (such as
corners). Region-based descriptions segment the image into several blobs and describes
those blobs. Random window descriptions randomly select rectangular windows for
description. We will discuss the various strategies in this section.

Global descriptions Examples of global descriptors of images are intensity histograms,
(color) edge histograms and texture descriptors. Most global descriptions, histograms
for example, do not retain positional information. This makes it hard to describe images
with significant differences between the different parts of the image. There are global
descriptions which do capture positional information, such as color moment descrip-
tors [29]. This has the disadvantage that the descriptions are no longer invariant to
geometrical changes.

To use descriptors for retrieval, similarity between descriptions needs to be defined.
In general, the Euclidian distance is used. However this distance may not correspond
to human perceptions of descriptor differences. The Mahalanobis distance takes into
account the correlations within the data set, which the Euclidian distance does not.
However, to be able to apply the Mahalanobis distance, the covariance matrix of the
whole dataset needs to be estimated. This is expensive for high-dimensional descrip-
tors. Another distance is the histogram intersection. Histogram intersection compares
corresponding bins in two histograms and takes the minimal value of the two bins. The
normalized sum over all bins forms the distance. In histogram intersection, the bins
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with many samples contribute most to the distance. It is fairly stable against changes in
image resolution and histogram size. However, it is limited to histograms only. Another
method is the Kullback-Leibler divergence from information theory, which can be used
for comparison of distributions and thus histograms. However, the Kullback-Leibler
divergence is non-symmetric and is sensitive to histogram binning, limiting its practical
use. The Earth Movers Distance [36] also compares distributions. The distance reflects
the minimal amount of work needed to transform one distribution into the other by
moving ‘distribution mass’ around. It is a special case of a linear optimization problem.
An advantage of Earth Movers Distance is that it can compare variable-length features.
However, its computation is very expensive when compared to the other distances.

We will use the Euclidian distance for descriptor comparison, because it is fast to
compute and can be applied to all numerical descriptors.

Partition descriptions Partition descriptions divide the image into a (non-)overlapping
grid. Every window can be described as if it is a separate image, retaining some posi-
tional information. The descriptions can be combined into one large description which
is more fine-grained than the global one.

Van Gemert [48] computes Weibull-based features over every window of a grid parti-
tioning of the image. Weibull-based features model the histogram of a Gaussian deriva-
tive filter by using a Weibull distribution. The parameters of this distribution are used
as features. The histogram of a Gaussian derivative filter represents the edge statistics
of an image.

Lazebnik [18] repeatedly subdivides the image into partitions and computes his-
tograms at increasingly fine resolutions. These so-called spatial pyramids achieve per-
formance close to the interest region methods we discuss next.

Local descriptions Most of the state-of-the-art in CBIR descriptions is based on
interest regions1 [54]. These are regions which can be detected under image changes
such as scaling and rotation with high repeatability. For every interest region in an
image, a description is created. Because the region is detectable after a translation,
the description will be translation invariant if it does not contain position information.
For scale changes, the detected region will be covariant with the scale changes, thus the
same region will be described, only at a different scale. If the description is normalized
for the region size and does not contain position information, then it is scale invariant.
Rotation invariance can be achieved by using either a description which does not contain
position information, or by using a description which is aligned to a dominant orientation
of the region. For the latter, robust selection of this dominant orientation is needed.
Descriptions based on interest regions are commonly referred to as local features, to
offset them against global features which are computed over the entire image.

In an evaluation of interest region detectors for image matching, Mikolajczyk et al
[24] found that the Harris-Affine detector performs best. The purpose of the evaluation
is to determine which kind of interest regions are stable under viewpoint changes, scale
changes, illumination changes, JPEG compression and image blur. The repeatability of
interest region detection under these changing conditions is measured. The dataset used
consists of 48 images, with only one condition change per image.

Zhang [54] obtains best results using the Harris-Laplace interest region detector,
noting that affine invariance is often unstable in the presence of large affine or perspective
distortions. The evaluation by Zhang uses several texture datasets and the Xerox7
dataset to draw this conclusion.

1Interest regions are also referred to as salient regions and/or scale invariant keypoints in literature.
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The SIFT descriptor [21] is consistently among the best performing interest region
descriptors [54, 28]. SIFT describes the local shape of the interest region using edge
orientation histograms. SIFT operates solely on intensity images, ignoring color infor-
mation present in the image. To address this problem, Van de Weijer [47] proposes an
additional hue histogram on top of SIFT. However, no evaluation of this descriptor on
similar datasets is currently available. We will include this descriptor in our experiments.

Descriptors of interest regions cannot be used as feature vectors directly, because
they vary in length. Zhang [54] addresses this by using the Earth Movers Distance,
discussed earlier. This distance supports comparison of variable-length descriptors, but
is computationally expensive. For the CalTech101 dataset this is still feasible, but for
larger datasets the computation time becomes an issue.

Most other methods are based on a visual codebook consisting of a number of repre-
sentative region descriptors. A feature vector then consists of the similarity between the
visual codebook and the image descriptors. The most common method is to construct
a histogram where descriptors are assigned to the ‘bin’ of the most similar codebook
descriptor. These histograms have a fixed length equal to the codebook size. The advan-
tage of visual codebook methods is that it does not require the expensive Earth Movers
Distance for comparison. A disadvantage of a visual codebook is that it is a bag-of-
features method which does not retain any spatial relationships between the different
descriptors it was constructed from.

Region-based descriptions The primary example of a region-based description is
the Blobworld representation by Carson [4]. This method groups pixels with similar
colors into a number of blobs. The number of blobs used depends on the image, but
is constrained to lie between 2 and 5. Retrieval in Blobworld is performed using a
matching strategy: the blobs in an image are compared to all blobs in the dataset using
the Mahalanobis distance. The advantage of the Blobworld representation is that it
works well for distinctive objects. However, there are many parameters to be tuned
during blob extraction and the classification step is computationally expensive.

Random window descriptions Marée [22] questions the use of both interest regions
and image partitions. Instead they propose the use of random subwindows. Descriptions
of these rectangular windows together form the description of the image. While the
approach is generic, the windows used are only invariant to very small rotations.

The use of a decision tree for classification of new images supports dataset sizes of
up to several thousand images. However, for this method the number subwindows per
image is more than two orders of magnitude higher than other approaches. It is not
feasible to perform experiments using this method on a large dataset.

In conclusion, the CBIR field has extensively studied image descriptions and their
properties. However, evaluation of concept-based retrieval is performed on datasets of
an artificial nature or with a limited size.

2.2 Video retrieval

Where commonly accepted benchmarks are practically non-existent in content-based
image retrieval, the field of video retrieval has the TREC Video Retrieval Evaluation
(TRECVID) [32] benchmark. TRECVID started initially as a ‘video’ track inside the
TREC (Text Retrieval Evaluation Conference) in 2001. Since 2003, TRECVID is an
independent evaluation. The main goal of the TRECVID is to promote progress in
content-based retrieval from digital video via open, metrics-based evaluation. TRECVID
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Figure 1: Semantic concepts used in this thesis. These are the same concepts as those
in the TRECVID 2006 high-level feature extraction task [32].
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has a high-level feature extraction task. This task benchmarks the effectiveness of
automatic detection methods for semantic concepts. A semantic concept is a high-level
label of the video content. These semantic concepts can be compared to categories in the
CBIR field. The semantic concepts evaluated in TRECVID 2006 are shown in figure 1.

2.2.1 Datasets

The focus of the video retrieval field is on generic methods for concept detection and
large-scale evaluation of retrieval systems. In table 2, an overview of video retrieval
datasets is given. The 10 semantic concepts used in the 2005 edition of TRECVID
are: sports, car, map, building, explosion, people walking, waterfront, mountain and
prisoner. In 2005, the system of Snoek [39] stood out for its support of 101 semantic
concepts. In 2006, the 39 semantic concepts listed in figure 1 were evaluated. Further-
more, LSCOM is developing an expanded lexicon in the order of 1000 concepts.

The TRECVID benchmark only provides a common dataset and a yearly evalua-
tion. The evaluation is performed by humans verifying whether the top ranked results
are correct. Annotating the entire test set is not feasible due to limited human re-
sources. Performing a new experiment which ranks as of yet unseen items at the top
will thus require extra annotation effort. The MediaMill Challenge problem [42] for au-
tomated detection of 101 semantic concepts has been defined over the training data from
TRECVID 2005. This data has annotations for both the training and test set for 101
semantic concepts, thus providing a basis for repeatable experiments. The challenge de-
fines unimodal experiments for the visual and text modality and several experiments for
fusion of different modalities. In figure 2 an impression of the TRECVID 2005 dataset
is given.

Automatic semantic concept detection experiments divide a dataset, annotated with
a ground truth, into a training set and a test set. Concept detectors are built using only
the training data. The detectors are applied to all video shots in the test set. Using the
detector output, the shots are ordered by the likelihood a semantic concept is present.
The quality of this ranking is evaluated.

2.2.2 Video indexing

For image retrieval, it is obvious to use individual images as the fundamental unit for
indexing. For video retrieval, the fundamental unit to index is not immediately obvious.
One could index every single video frame, but this requires huge amounts of processing
and is not necessarily useful. After all, retrieving two adjacent frames of a single video
is not an useful retrieval result, as these are likely to be almost the same. It would be

Name # shots # concepts Properties
TRECVID 2002 9,739 10 from Internet Archive [16], amateur films, fea-

ture films 1939-1963
TRECVID 2003 67,385 17 CNN/ABC news broadcasts from 1998
TRECVID 2004 65,685 10 CNN/ABC news broadcasts from 1998, partial

overlap with TRECVID 2003
TRECVID 2005 89,672 10 English, Chinese and Arabic news broadcasts

from November 2004
Mediamill
Challenge [42]

43,907 101 subset of TRECVID 2005 dataset, with extra
concepts

TRECVID 2006 169,156 39 includes complete TRECVID 2005 dataset

Table 2: Overview of video retrieval datasets.

16



Figure 2: Impression of the TRECVID 2005 training set. It contains videos from Ara-
bic, Chinese and English news channels. On news channels one can expect interviews,
speeches, stock market information, commercials, soap operas, sports, etc.

more useful to aggregate parts of the video into larger units. This aggregation does not
have to be based on entire frames per se. As in the CBIR field, it is possible to have a
finer granularity than an entire frame.

In general, camera shots are currently used as the fundamental units of video for
higher-level processing. In a video stream, boundaries between shots are defined at
locations where the author of the video makes a cut or transition to another scene or
a different camera and/or a jump in time. Fast shot boundary detectors with high
accuracy are available [32].

Given a shot segmentation of a video, the subsequent problem is the description of
these shots. The majority of current methods for extraction of visual descriptions uses
only a single keyframe which is representative for the entire shot. However, this can be
done under the assumption that other frames of the video will have similar content as
the keyframe. For action-packed shots, this assumption will not hold. The description
of the shot will then be incomplete. However, with the current state of technology, the
reduction in computational effort is more important. With a minimum shot duration of
two seconds and 25 frames per second, there is a fifty-fold reduction in processing time
(at a minimum).

In TRECVID 2005, the best performance on semantic concept detection for 7 con-
cepts has been achieved [33] using multiple global descriptions of color, shape, texture
and video motion. All visual descriptions, except for video motion, were performed on
the shot keyframe level. Text features based on a speech recognition transcription of
the video have also been used. While the contribution of individual features is undocu-
mented, for semantic concepts with strong visual cues, such as explosion, building and
mountain, the combination of features outperformed all other systems. The combination
of features is commonly referred to as fusion.
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Naphade [31] shows that multi-granular description of shot keyframes improves con-
cept detection over global description, similar to the results in Content-Based Image
Retrieval. Specifically, partitioning of keyframes with and without overlap and a rudi-
mentary form of interest regions are investigated.

In the video retrieval field, the focus lies on features which can be applied in a feasible
processing time. Features from the CBIR field are applied, investigating whether the
invariance properties improve retrieval results on extensive video datasets.

2.3 Conclusions

State-of-the-art in image descriptors such as the SIFT features for image retrieval do not
exploit the color information in an image: they operate on intensity information only.
Therefore, we will extend interest region detection and region description to include
color information. We evaluate our methods on concept detection in video, exploiting
the availability of large real-world datasets in the video retrieval field. To allow for
experimentation on a large dataset, we need fast feature extraction methods. Finally,
we will study the relative importance of using interest region detection over other image
areas by offsetting interest region description against global description.
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3 Coloring concept detection using interest regions

In this chapter, we present the background information necessary for understanding our
concept detection system. In section 3.1, we introduce various digital image processing
methods and a reflection model to explain the physics behind images and video record-
ings. Using this model, several color spaces and their invariance properties are discussed
in section 3.2. In section 3.3, color constancy is discussed, which we use to achieve in-
variance to the color of the light source. In section 3.4, the use of image derivatives for
detection of edges and corners in an image is discussed. In section 3.5, interest point
detectors based on the Harris corner detector are used to detect scale invariant points.
For description of the image area around these points, we discuss several region descrip-
tors based on shape and color in section 3.6. In section 3.7, we discuss data clustering
algorithms which we use for data reduction. Finally, in section 3.8, machine learning
algorithms are discussed which we employ to learn models from annotated data.

3.1 Reflection model

It is important to understand how color arises, before we can discuss color-based features.
We need to understand the process behind the image formation process. Image formation
is modeled as the interaction between three elements: light, surface and observer (a
human observer or image capture devices such as cameras). In figure 3 the image
formation process is illustrated. Light from a light source falls upon a surface and is
reflected. The reflected light falls upon the sensor of the observer (human eye or camera
CCD chip) and eventually leads to a perception or measurement of color. Because we
will be processing digital videos, we will focus our discussion on the creation of digital
images and not on exploring human perception of color.

Figure 3: Image formation process. Light from a light source falls upon a surface and
is reflected. Depending on the angle between the surface normal and the incident light,
a different amount of light is reflected. The reflected light falls upon the sensor of an
observer which eventually leads to a perception or measurement of color.

Digital cameras measure the light that falls onto their CCD chip. This chip contains
many small sensors. These sensors have a sensitivity which varies depending on which
part of the light spectrum they are measuring. We will refer to the sensitivity of a sensor
at wavelength λ as f(λ). As there exists no single sensor which can accurately measure
the entire visible light spectrum, typical image capture devices sample the incoming
light using three sensors. In general, these sensors are sensitive to red, green and blue
wavelength light. The responses of these sensors are denoted by R, G and B. Together
they form a triplet of numbers. Mathematically, the responses are related to light,
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surface and sensor of the image formation process and are defined as follows: R
G
B

 =

 (~e · ~n)
∫
E(λ)ρ(λ)fR(λ)dλ

(~e · ~n)
∫
E(λ)ρ(λ)fG(λ)dλ

(~e · ~n)
∫
E(λ)ρ(λ)fB(λ)dλ

 (1)

with E(λ) the spectrum of the light source, ρ(λ) the reflectance of the surface and fS(λ)
the sensitivity of sensor S to different parts of the spectrum.

n

r

n

r

e

r

e

r

Figure 4: At the top, Lambertian reflectance of a surface is illustrated. Light penetrates
a surface and leaves the surface in all directions, reflected off of micro surfaces. This is the
color signal C(λ), which depends on the incident light E(λ) and the surface reflectance
ρ(λ). At the bottom, it is illustrated how a Lambertian surface, which reflects light
with equal intensity in all directions, can still have an intensity depending on the angle
between the surface normal ~n and the angle of incidence of the light ~e: the light per
unit area is different.

The color signal C(λ) which is perceived or measured by a sensor is created by light
E(λ) penetrating the surface and being reflected off of micro surfaces, depending on the
surface reflectance ρ(λ). This is illustrated in figure 4 at the top.

We assume surfaces are Lambertian, i.e. they reflect light with equal intensity in
all directions. This does not mean that all surfaces appear equally bright. The amount
of light arriving depends on the angle of the surface with respect to the light. This is
illustrated in figure 4 at the bottom. The intensity of the reflected light depends on
the cosine angle between the surface normal ~n and the angle of incidence of the light ~e.
We can write the scale factor (~e · ~n) outside the integral as it does not depend on the
wavelength of the light.

Digital images are created by taking color samples of a scene at many adjacent
locations. A pixel is the fundamental element in a digital image. With a pixel, a single
color is associated. A single pixel in this grid corresponds to a finite area of a digital
camera chip. Over this finite area R, G and B sensors are sampled. These samples are
combined into a RGB triplet, which is associated with a pixel. The RGB samples need
to be quantified within a limited range and precision to allow for digital storage. We
will assume a range of [0, 1] for the RGB triplet. RGB triplets include: (1, 0, 0) is red,
(0, 1, 0) is green, (0, 0, 1) is blue, (1, 1, 1) is white and (0, 0, 0) is black, (1, 1, 0) is yellow
and (1, 3

4 ,
3
4 ) is pink.

20



3.1.1 Modelling geometry changes

Equation 1 shows that when the surface or lighting geometry changes, sensor responses
change by a single scale factor (~e · ~n). That means that sensor responses to a surface
seen under two different viewing geometries or illumination intensities are related by:

R2

R2 +G2 +B2
=

sR1

s(R2 +G2 +B2)

It is straightforward to make the sensor responses independent of the light intensity,
by dividing by the sum of the R, G and B responses. This yields the normalized RGB
color space:  r

g
b

 =

 R
R+G+B

G
R+G+B

B
R+G+B

 (2)

This yields the normalized RGB color model. The (r, g, b) triplet is invariant to changes
in geometry and illumination intensity, as the sum of the triplet is always equal to 1.

3.1.2 Modelling illumination color changes

When the color of the light source in a scene changes, it becomes very challenging to
achieve stable measures. A color measurement of the scene is needed which remains
stable regardless of the illuminant spectral power distribution E(λ). However, from
equation 1, we derive that the illumination E(λ) and the surface reflectance ρ(λ) are
heavily intertwined. Separating them is non-trivial.

However, often the relationship between sensor responses under different illuminants
can be explained by a simple model. This model is called the diagonal model or von
Kries model of illumination change [49]. In particular the responses to a single surface
viewed under two different illuminants 1 and 2 is approximated as: R2

G2

B2

 =

 α 0 0
0 β 0
0 0 γ

 R1

G1

B1

 (3)

where α = β = γ for geometry and illumination changes only.
The diagonal model only holds when there is no ambient lighting in the scene. Also, it

is assumed that a single spectral power distribution for the light source is used through-
out the scene. It is possible to use multiple light sources, as long as a single spectral
distribution E(λ) is sufficient to model them.

3.2 Color spaces and invariance

In this section we will discuss various color spaces which can be used to represent a color
and their invariance properties. Table 3 gives an overview of the invariance properties
of the color spaces based on Gevers [13]. The listed properties will not be repeated in
the text.

3.2.1 RGB

We have already encountered the RGB color space in our discussion on the image
formation process. The color space consists of three channels, R, G and B. Every
channel can take values in the range [0, 1]. In figure 5 the RGB color space is visualized
as an RGB cube. All grey-values lie on the axis (0, 0, 0) (black) to (1, 1, 1) (white).
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I RGB rgb H o1o2
viewing geometry - - + + +
surface orientation - - + + +
shadows/shading - - + + -
highlights - - - + +
illumination intensity - - + + +
illumination color - - - - -

Table 3: Overview of color spaces and their invariance properties based on Gevers [13].
+ denotes invariant and - denotes sensitivity of the color space to the imaging condition.

0

1

0

1

0

1

G

R

B

Figure 5: On the left a schematic view of the RGB color space. On the right a visual-
ization of the RGB color space. Only three faces of the RGB cube on the left can be
seen, containing red (1, 0, 0), green (0, 1, 0), blue (0, 0, 1), yellow (1, 1, 0), cyan (0, 1, 1),
magenta (1, 0, 1) and white (1, 1, 1). White is hard to discern due to the black lines of
the cube.
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3.2.2 Normalized RGB

The normalized RGB color space is invariant to changes in lighting geometry and overall
changes in intensity. This was discussed in section 3.1.1. Equation 2 converts RGB
colors to normalized RGB.

The sum of r,g and b is always equal to 1, making one of the channels redundant.
It should come as no surprise then that the normalized RGB color space is equal to a
plane in the RGB color space: the plane where R+G+B = 1. In figure 6 the location
of this plane inside the RGB cube is visualized, as is the plane itself. This plane takes
the shape of a triangle. It is commonly referred to as the chromaticity triangle. White
(1, 1, 1) becomes ( 1

3 ,
1
3 ,

1
3 ) and is located at the center of the triangle. All values from

the grey-value axis (0, 0, 0) to (1, 1, 1) map to this point, except black, since division by
zero yields infinite values. Practical implementations of this color space do map black
to the point ( 1

3 ,
1
3 ,

1
3 ).
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B

Figure 6: On the left the RGB cube. The chromaticity triangle ‘R + G + B = 1’ is
denoted by the dashed lines. On the right the chromaticity triangle is drawn separately,
visualizing the normalized RGB color space.

3.2.3 HSI

The HSI color space consists of three channels: Hue, Saturation and Intensity. In the
normalized RGB color space, the light intensity (R + G + B) was divided out. In the
HSI color space it is a separate channel:

I =
R+G+B

3

Hue and saturation are defined in the chromaticity triangle relative to a reference point.
This reference point is a white light source, located at the center of the triangle. Sat-
uration is defined as the radial distance of a point from the reference white point (see
figure 7). Saturation denotes the relative white content of a color.

S =

√
(r − 1

3
)2 + (g − 1

3
)2 + (b− 1

3
)2

Hue is defined as the angle between a reference line (the horizontal axis) and the
color point (see figure 7). Hue denotes the color aspect, e.g. the actual color:

H = arctan
r − 1

3

g − 1
3
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Figure 7: On the left the RGB cube. The chromaticity triangle is denoted by the dashed
lines. The dotted line denotes the direction of the intensity channel: perpendicular to
the chromaticity triangle. On the right the chromaticity triangle is drawn separately,
denoting the meaning of hue and saturation channels. Hue and saturation are defined
for all planes parallel with the chromaticity plane; the specific plane depends on the
value of the intensity channel.

Figure 7 helps in understanding the HSI color space. The intensity channel is perpen-
dicular to the chromaticity triangle. Hue and saturation are most easily defined in the
chromaticity triangle. Note that the chromaticity plane’s location changes depending on
the intensity. This allows the HSI color model to cover the entire RGB cube. However,
hue and saturation are nonlinear. Saturation becomes unstable for low intensities. Hue
becomes unstable when saturation and intensity are low. This instability thus occurs
for grey-values and dark colors [46].

Above we have used normalized RGB channels in our conversion to HSI. A direct
conversion from RGB to HSI is as follows [19]:

H = arctan
√

3(G−B)
(R−G) + (R−B)

S = 1− min(R,G,B)
R+G+B

I =
R+G+B

3

3.2.4 Opponent color space

The opponent color theory states that the working of the human eye is based on three
kinds of opposite colors: red-green, yellow-blue and white-black. An example of the
theory is the after-image. Looking at a green sample for a while will leave a red after-
image when looking at a white sample afterwards. The same effect occurs for yellow-blue.
Both members of an opponent pair exhibit the other: adding a balanced proportion of
red and green will produce a color which is neither reddish nor green. Also, no color
appears to be a mixture of both members of any opponent pair.

The opponent color space is based on the opponent color theory. It is given by:

o1 = R−G√
2

o2 = R+G−2B√
6

o3 = R+G+B√
3
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The third channel o3 is equal to the intensity channel of HSI, subject to a scaling
factor. o1 and o2 contain color information. All channels of the opponent color space
are decorrelated.

3.3 Color constancy

Color constancy is the ability to recognize colors of objects invariant of the color of the
light source [10]. In the model of illumination color changes (section 3.1.2) corresponding
pixels of two images of a scene under two different illuminants are related by three
fixed scale factors. If we know the illuminant used in a scene and its relationship to a
predefined illuminant like RGB(1, 1, 1), then it is possible to normalize the scene and
achieve color constancy. Certain assumptions need to be made in order to achieve color
constancy. A number of different hypotheses are commonly used:

• Grey-World hypothesis [3]: the average reflectance in a scene is grey.

• White patch hypothesis [2]: the highest value in the image is white.

• Grey-Edge hypothesis [45]: the average edge difference in a scene is grey.

We will use the Grey-Edge hypothesis, because it outperforms the two other hy-
potheses [45]. With the Grey-Edge assumption the illuminant color can be computed
from the average color derivative in the image. For additional details we refer to [45].

Color constancy normalization gives invariance to color of the illuminant. From
equation 3 we derive that a division by the scaling factors α, β and γ achieves color
constancy. These scaling factors are equal to the estimated color of the illuminant when
converting to the illuminant RGB(1, 1, 1).

3.4 Image derivatives

The ability to take one or more spatial derivatives of an image is one of the fundamental
operations in digital image processing. However, according to the mathematical defini-
tion of derivative, this cannot be done. A digitized image is not a continuous function of
spatial variables, but a discrete function of the integer spatial coordinates. As a result
only approximations to the true spatial derivatives can be made.

Figure 8: Example image used to illustrate digital image processing operations through-
out this chapter. On the left the greyvalue version is shown. On the right the color
version is shown.
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The two dimensional Gauss filter is the most common filter for computing spatial
derivatives [14]. The linear Gaussian filter defined with the convolution kernel gσ is:

gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2

with σ the smoothing scale over which to compute the derivative. In the rest of this
thesis we will adopt the notation g(x, σ) for the Gaussian filter with x a 2D position
and σ the smoothing scale.

In figure 9 the first order derivatives of figure 8 in the x and y direction are shown
for different smoothing scales σ. These derivatives are referred to as Lx and Ly for the
x and y directions, respectively.

σD ≈ 1.07 σD ≈ 2.14 σD ≈ 4.28 σD ≈ 8.55

Lx

Ly

Figure 9: Image derivatives in the X direction Lx (top row) and in the Y direction
Ly (bottom row) at various differentiation scales. The differentiation scale is shown
above the column of the image. The derivatives have inverted and scaled for display.
White signifies a derivative value near 0. Black is the maximum derivative value, with
greyvalues lying in-between. Per scale the maximum derivative value is different: for
higher differentiation scales, the maximum value is lower. For visualization purposes,
these have been scaled to use the full grey-value range. The input image is shown on
the left in figure 8.

The image gradient at a point x is defined in terms of the first order derivatives as
a two-dimensional column vector:

5f(x) =
(
Lx(x, σ)
Ly(x, σ)

)
The magnitude of the gradient 5f is high at discontinuities in an image. Examples

are edges, corners and T-junctions. Using local maxima of the gradient magnitude it is
possible to build a very simple edge detector.
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A distinction between edges and corners and T-junctions can be made using the
second moment matrix (also known as auto-correlation matrix). The second moment
matrix µ is defined in terms of spatial derivatives Lx and Ly:

µ(x, σD) =
(

L2
x(x, σD) LxLy(x, σD)

LxLy(x, σD) L2
y(x, σD)

)
with σD is the differentiation scale. Stability of the second moment matrix can be
increased by integrating over an area using the Gaussian kernel g(σI) (see equation 4).

The eigenvalues of this matrix, λ1(µ) and λ2(µ), are proportional to the curvature
of the area around point x. Using the eigenvalues point x can be categorized as follows:

• λ1(µ) ≈ 0 and λ2(µ) ≈ 0: There is little curvature in any direction; the point is
located in an area of uniform intensity.

• λ1(µ)� λ2(µ): Large curvature in one direction and little curvature in the other
direction; the point is located on an edge.

• λ1(µ) ≈ λ2(µ) � 0: Large curvature in both directions, the point is located on a
corner or a junction.

In the next section interest point detectors will be built using spatial derivatives and
the second moment matrix.

3.5 Interest point detectors

In this section we will discuss two scale invariant interest point detectors: Harris-Laplace
and ColorHarris-Laplace. Both are based on the Harris corner detector and use Lapla-
cian scale selection. For an overview of detectors see [24].

3.5.1 Harris corner detector

The Harris corner detector is based on the second moment matrix (see section 3.4). The
second moment matrix describes local image structure. By default the matrix is not
independent of the image resolution, so it needs to be adapted for scale changes.

The adapted matrix for a position x is defined as follows [27]:

µ(x, σI , σD) = σ2
Dg(σI)

(
L2

x(x, σD) LxLy(x, σD)
LxLy(x, σD) L2

y(x, σD)

)
(4)

with σI the integration scale, σD is the differentiation scale and Lz(x, σD) the derivative
computed in the z direction at point x using differentiation scale σD.

The matrix describes the gradient distribution in the local neighborhood of point
x. We compute local derivatives with Gaussian kernels with a size suitable for the
differentiation scale σD. The derivatives are averaged in the neighborhood of point x by
smoothing with a Gaussian window suitable for the integration scale σI .

The eigenvalues of the matrix represent the two principal signal changes in the neigh-
borhood of a point. This is akin to the eigenvalues of the covariance matrix in principal
component analysis (PCA). The eigenvalues are paired with a corresponding eigenvector.
We project the data onto the basis formed by the orthogonal eigenvectors. The eigen-
value corresponding to an eigenvector will then describe the variance in the direction of
the eigenvector.

We use this to extract points for which both eigenvalues are significant: then the
signal change is significant in orthogonal directions, which is true for corners, junctions,
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etc. Such points are stable in arbitrary lighting conditions. In literature these points
are called ‘interest points’.

The Harris corner detector [15], one of the most reliable interest point detectors,
is based on this principle. It combines the trace and the determinant of the second
moment matrix into a cornerness measure:

cornerness = det(µ(x, σI , σD))− κtrace2(µ(x, σI , σD)) (5)

with κ an empirical constant with values between 0.04 and 0.06.
Local maxima of cornerness measure determine the location of interest points. The

interest points detected depend on the differentiation and integration scale. Due to the
definition of cornerness, it is possible for the measure to become negative, yet still be
a maximum. This happens if all values surrounding the negative maximum have lower
values than the maximum. To counter very low cornerness maxima, they are only
accepted if they exceed a certain threshold.

original image σI = 1.5 σI = 3 σI = 6 σI = 12

Figure 10: Corners (red dots) detected at different scales using Harris corner detector.
The differentiation scale σD has a fixed relation to the integration scale: σD = 0.7125σI .
The differentiation scales match those displayed in figure 9. On the left the input image
is shown.

3.5.2 Scale selection

The Harris corner detector from the previous section has scale parameters. The detected
points depend on this scale. It is possible for a single point to be detected at multiple
(adjacent) scales.

The idea of automatic scale selection is to select the characteristic scale of the point,
depending on the local structure around the point. The characteristic scale is the scale
for which a given function attains a maximum over scales.

It has been shown [26] that the cornerness measure of the Harris corner detector
rarely attains a maximum over scales. Thus, it is not suitable for selecting a character-
istic scale. The Laplacian-of-Gauss (LoG) does attain a maximum over scales. We use
it to select the characteristic scale of a point. With σn, the scale parameter of the LoG,
it is defined for a point x as:

|LoG(x, σn)| = σ2
n|Lxx(x, σn) + Lyy(x, σn)| (6)

In figure 11, the LoG kernel is visualized. The function reaches a maximum when the
size of the kernel matches the size of the local structure around the point. It responds
to blobs very well due to its circular symmetry, but it also responds to corners, edges,
ridges and junctions.
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Figure 11: Laplacian-of-Gauss (LoG) kernel. The kernel shown has scale σn = 5.

3.5.3 Harris-Laplace detector

The Harris-Laplace detector uses the Harris corner detector to find potential scale-
invariant interest points. It then selects a subset of these points for which the Laplacian-
of-Gaussian reaches a maximum over scale.

Mikolajczyk [27] defines an iterative version of the Harris-Laplace detector and a
‘simplified’ version which does not involve iteration. The simplified version performs a
more thorough search through the scale space by using smaller intervals between scales.
The iterative version relies on its convergence property to obtain characteristic scales.
By performing iteration, it gives more fine-grained estimations. Mikolajczyk notes that
the ‘simplified’ version is a trade-off between accuracy and computational complexity.
Due to our need for fast feature extraction (section 2.3), we will use the simplified version
of the Harris-Laplace detector.

In section 5.2 we will discuss the Harris-Laplace algorithm and its implementation
in more detail.

3.5.4 Color boosting

The intensity-based interest point detector in the previous section uses the derivative
structure around points to measure the saliency of the point. Stable points with high
saliency qualify as an interest point. In the next section interest points detectors will
be extended to use all RGB channels.

Rare color transitions in an image are very distinctive. By adapting the saliency of
an image, the focus of the detector shifts to more distinctive points. The transformation
of the image to achieve this is called color saliency boosting. We use the color boosting
transformation in the opponent color space [44]. This transformation is a weighing of
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the individual opponent channels:

o1′ = 0.850 o1
o2′ = 0.524 o2
o3′ = 0.065 o3

where the sum of the squared weights is equal to 1. These weights are focused on the
red-green and yellow-blue opponent pair, with almost no weight given to the intensity
o3 channel. Figure 12 (on the left) shows the colorboosted version of the color image in
figure 8. The difference between the glass and the background has increased significantly,
increasing saliency of the edges of the glass.

3.5.5 ColorHarris-Laplace detector

So far the images consist of single channels, i.e. intensity images. Only the Harris corner
detector and the LoG function operate on the image directly. In this section, we extend
them to operate on color images.

The Harris corner detector uses the second moment matrix. The elements of the
matrix are always the product two image derivatives Lx (with x the derivative direc-
tion). For the extension to multiple channels n, we replace Lx with a vector ~fx =(
LC1

x , LC2
x , . . . , LCn

x

)T with Ci the ith channel. The product between derivatives is re-
placed with a vector inproduct. If the vector is 1-dimensional (e.g. an intensity image),
this is equivalent to the original second moment matrix.

The second moment matrix for a ColorHarris corner detector is:

µRGB(x, σI , σD) = σ2
Dg(σI)

(
~fx(x, σD) · ~fx(x, σD) ~fx(x, σD) · ~fy(x, σD)
~fx(x, σD) · ~fy(x, σD) ~fy(x, σD) · ~fy(x, σD)

)

with ~fx =
(
LC1

x , LC2
x , . . . , LCn

x

)T for an image with channels {C1, C2 . . . Cn}, with LCi
x

being the Gaussian derivative of the ith image channel Ci in direction x. The image
channels Ci can be instantiated to channels of any color model. However, it is also
possible to first apply preprocessing operations (such as color boosting) to an image and
then instantiate the channels. For our ColorHarris corner detector, we instantiate the
channels to the R, G and B channels of the standard RGB color space. We preprocess
images using color boosting. Results of this detector are shown in figure 12. Due to color
boosting, the cloth underneath the glass now consists of different shades of blue only.
The contribution of the R and G channels to the cornerness will be very low because
there is almost no change in these channels in the cloth. Primarily, the cornerness
comes from the B channel only, which by itself is not enough to exceed the threshold.

One way to extend the Laplacian-of-Gaussian kernel to multiple channels is by sum-
ming the responses of the individual channels:

|LoGRGB(x, σn)| = |LoGR(x, σn)|+ |LoGG(x, σn)|+ |LoGB(x, σn)|

It is also possible to assign different weights depending on the color channel or to
use different color channels altogether.

In conclusion, we have two different scale invariant point detectors. Harris-Laplace
triggers on corners in an intensity image, while Colorboosted ColorHarris-Laplace fo-
cuses on the color information in an image.
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colorboosted image σI = 1.5 σI = 3 σI = 6 σI = 12

Figure 12: Corners (green dots) detected at different scales using ColorHarris corner
detector on a colorboosted image (the original color image is shown in figure 8). The
differentiation scale σD has a fixed relation to the integration scale: σD = 0.7125σI .
The differentiation scales match those displayed in figure 9. On the left the colorboosted
input image is shown.

3.6 Region descriptors

For all possible granularities, there exists an image region that needs to be described.
The descriptors in this section are applicable to the entire image (global description)
and to interest regions (local description). The only difference between them is that for
the global description there is only a single image region to be described. For the local
description, the number of regions to be described is equal to the number of interest
regions.

The organization of this section is as follows. First, color histograms are discussed.
Second, color histograms on transformed color spaces are discussed. Third, a histogram
based on hue is discussed. Fourth, color moments and color moment invariants are
discussed. Finally, the SIFT descriptor is discussed.

3.6.1 Color histograms

A histogram is the graphical version of a table which shows what proportion of cases falls
into a certain data interval. In statistics, the data used for the creation of histograms
is one dimensional. The number of data values that fall into each of the data intervals
is counted, yielding the occurrence frequency of this interval. The data intervals are
commonly referred to as histogram bins.

Image histograms can be constructed by using the color of all image pixels as data
points. For intensity images, the ‘color’ of a pixel is equal to a single value. So, it is
straight-forward to use a 1D histogram. For color images, the color of a pixel is a vector
with length equal to the number of channels (typically 2 or 3). There are two ways this
can be achieved:

• Create a separate 1-dimensional histogram for each of the image channels. This
assume channel independence, because correlation between the channels cannot be
captured. With 3 channels and 15 bins per channel, this would yield a histogram
with 45 bins.

• Create an n-dimensional histogram, with each of the channels divided into a num-
ber of intervals. A pixel color falls into an interval in each dimension, together
forming a bin. The number of bins is equal to the multiplication of the number
of intervals in each channel. With 3 channels and 15 intervals per channel, this
would yield a histogram with 153 = 3375 bins.
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Theoretically, a 3D histogram for RGB images is more attractive than three 1D
histograms. However, the histogram can become sparse due to the large number of bins.
Sparseness could be reduced by assigning pixels to neighboring bins of their actual bin
as well. The increased amount of processing needed due to the larger number of bins is
an important drawback.

Due to the need for fast feature extraction and processing (section 2.3), we will use
the first method only. For a RGB histogram the assumption of independence between
the channels obviously does not hold. However, we believe it will still contain enough
useful information, albeit redundant.

The assumption does hold for a histogram based on the opponent color space (sec-
tion 3.2.4). In this color space, the channels are decorrelated and hence it is theoretically
sound to use 1D histograms.

3.6.2 Transformed color distribution

A RGB histogram is not invariant to changes in lighting conditions. If the light intensity
is increased, the color distribution characterized in the histogram is shifted to the right
(towards bins representing brighter colors) and possibly scaled. If the light intensity is
decreased, the distribution shifts to the left. It can be derived from equation 3 that a
change in illumination color scales the color distribution in every channel individually.

We achieve invariance to light intensity and illumination color by normalizing the
color distribution. The shift of the distribution is addressed by subtracting the mean.
The scaling of the distribution is countered by dividing through the standard deviation
of the distribution:  R′

G′

B′

 =


R−µR

σR
G−µG

σG
B−µB

σB


with µC the mean and σC the standard deviation of the distribution in channel C.

Overall this yields a distribution with a mean of 0 and a standard deviation of 1. A
histogram is constructed just like for normal color values, though the bin intervals will
need to be adapted so negative values are covered. A histogram based on the normalized
distribution is invariant to changes in light intensity, illumination color, shadows, shading
and viewpoint and geometry changes of the scene. A disadvantage is that distinguishing
scenes from one another by these properties is no longer possible: the discriminability
of the descriptor is reduced.

3.6.3 Hue histogram

The hue captures the dominant wavelength of color in the HSV color space (see sec-
tion 3.2.3). To describe color information in an image area, it makes sense to construct
a histogram of the hue channel. However, hue is known to be unstable around the grey
axis.

Van de Weijer [47] applies an error analysis to the hue. The analysis shows that the
certainty of the hue channel is inversely proportional to the saturation. The lower the
saturation, the more uncertain the color information in the hue channel. As colors with
low saturation are located near the grey axis, this hue unstability is expected. The hue
histogram is made more robust by weighing each sample of the hue by its saturation.
In a normal histogram, all data samples have an equal weight (typically 1).

The hue histogram is used as a 1D color histogram of the hue channel, where the bin
of a pixel is based on the hue. The value added to the bin is weighed by the saturation.
A further weighing with a Guassian mask is performed, which depends on the distance
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of a pixel to the center of the interest region. This corresponds to the hue histogram of
Van de Weijer [47].

3.6.4 Color-based moments and moment invariants

In mathematics, we compute moments over distributions or functions up to an arbitrary
order. The first moment is equal to the mean of a distribution. The second moment is
equal to the variance of the distribution. The third moment is called skewness after the
skew of a distribution.

A color image corresponds to a mathematical function I defining RGB triplets
for image positions (x, y): I : (x, y) 7→ (R(x, y), G(x, y), B(x, y)). Regarding RGB
triplets as data points coming from a distribution, it is possible to define moments.
Mindru et al [29] have defined generalized color moments Mabc

pq :

Mabc
pq =

∫ ∫
xpyq[IR(x, y)]a[IG(x, y)]b[IB(x, y)]cdxdy (7)

Mabc
pq is referred to as a generalized color moment of order p+ q and degree a+ b+ c.

Note that moments of order 0 do not contain any spatial information, while moments
of degree 0 do not contain any color information. Thus, moment descriptions of order 0
are rotationally invariant, while higher orders are not. A large number of moments can
be created with small values for the order and degree. However, for larger values the
moments are less stable. Typically generalized color moments up to the first order and
the second degree are used.

Under the assumption that the image being described is planar, photometric changes
in the image can be described as a linear combination of moments. By using the right
combination of moments, it is possible to normalize against photometric changes. These
combinations are called color moment invariants. Invariants involving only a single color
channel (e.g. out of a,b and c two are 0) are called 1-band invariants. Similarly there
are 2-band invariants involving only two out of three color bands. 3-band invariants
involve all color channels, but these can always be created by using 2-band invariants
for different combinations of channels.

We will use both color moments and color moment invariants for region descrip-
tion. The invariants have the additional benefit that they are invariant to photometric
changes.

3.6.5 SIFT

SIFT as originally proposed by Lowe [20] consists of both a scale invariant point detector
and a region descriptor. SIFT operates on greyvalue images only; no color information
is used. The detector gives results similar to the Harris-Laplace detector: scale invariant
points are detected on corners in an image. We will only look at the SIFT descriptor.
SIFT describes the local shape of the interest region using edge histograms.

The descriptor consists of two steps: orientation assignment and region description.

Orientation assignment The image gradients in a region of interest are computed
(e.g. a 16x16 or 32x32 area). Orientations corresponding to the dominant direction(s) of
the gradients are assigned to the region. Typically there is one dominant direction, but
regions with two or three dominant directions exist. Description is performed relative
to the assigned orientation. The descriptor is adapted to the scale of the region by
resampling the area around the region center, sized proportionally to the region scale,
to a fixed-size window (see section 5.3). This provides us scale and rotation invariance.
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Region description SIFT describes the local shape of the interest region using edge
histograms. To make the descriptor robust to noise, while retaining some positional
information, the interest region is divided into a 4x4 grid where every quadrant has its
own edge direction histogram (8 bins). This edge direction histogram is constructed
from the local gradient direction and weighed by the gradient magnitude. In figure 13
an example edge histogram with a 2x2 grid is shown.

Figure 13: Schematic of the SIFT descriptor. On the left, an interest region is visualized
(blue circle). The region is divided into four quadrants. Here every quadrant contains
16 samples of the image gradient. The gradient direction and magnitude samples are
aggregated into an 8-bin gradient histogram. E.g. the length of the arrows in the
gradient histograms on the right represent the bins of the gradient histograms. Every
one of the four quadrants has its own gradient histogram. Together these form the
description of the interest region. Scheme is taken from Lowe [21].

3.7 Visual vocabulary

So far, methods are discussed to find interest regions and compute descriptors for them.
Every descriptor is a vector of fixed length. For every keyframe, a variable number of
descriptors is available. These need to be aggregated into a fixed-length representation
if we want to use it as an input for machine learning algorithms (section 3.8).

First, different ways are discussed to find clusters in visual descriptor data to con-
struct a visual vocabulary. Second, a (dis)similarity measure is discussed to create a
fixed-length representation from a variable number of descriptors using the visual vo-
cabulary.

3.7.1 Clustering

Data clustering algorithms strive to find the most representative points in a data space
such as our descriptor space. These points are typically called clusters, since we want
them to be located in areas where the data is densely packed. Clusters are not required
to be equal to one of the data points.

We use a data-driven clustering approach to find a visual vocabulary consisting of
representative proto-concepts in descriptor space. Proto-concepts are an intermediate
step towards ‘semantically’ modelling a scene. I.e. a specific proto-concept, which is
located in descriptor space, could describe a region containing only blue and red. In
turn this proto-concept could be used to identify a Dutch ‘no parking’ sign.
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A popular clustering approach for finding proto-concepts is the k-means algorithm [6,
35, 43]. K-means is an unsupervised clustering algorithm based on the principle to
minimize the variance between k clusters and the training data, where k is the number
of clusters. The advantages of k-means are that it is simple and efficient to implement.
However, the disadvantage of k-means is that the algorithm is variance-based. Thus,
the algorithm will award more clusters to high-frequency areas of the data, leaving less
clusters for the remaining areas. This over-sampling of dense regions is unwanted, since
frequent occurring data is not so informative.

In contrast to variance-based clustering, the prototypes for a codebook model are
better represented by using radius-based clustering [17]. Radius-based clustering assigns
all data points within a fixed radius of similarity r to one cluster, where r is a parameter
of the algorithm. This radius r, denotes the maximum similarity between data points
that may be considered equal. As such, the radius determines whether two patches
describe the same prototype. The radius-based clustering algorithm we use is developed
by Astrahan [1] in 1970, which is a fixed radius version of the more accessible [30]. The
algorithm by Jurie [17] differs from the algorithm by Astrahan that we use. We have
chosen Astrahans algorithm since Jurie uses a Gaussian mean-shift kernel for finding
the densest point where Astrahan does not make any assumptions about the data.

We will describe k-means and radius-based clustering algorithms in more detail in
section 5.4.

3.7.2 Similarity measures

The (dis)similarity measure between the visual vocabulary and the descriptors of an
image depends on the clustering algorithm used. For k-means a descriptor is assigned
to the closest proto-concept. With ~F denoting the feature vector of length n, where n
equals the number of clusters, we obtain:

~Fi =
1
m

m∑
j=1

ψ(i, j) (8)

where indicator function ψ(i, j) equals 1 if the jth descriptor is closer to the ith cluster
than to all other clusters and 0 otherwise. Closeness is computed using the Euclidian
distance. Note that ~Fi is a similarity measure as the values of ~Fi will be higher for
similar vectors. All elements of ~Fi are constrained to the range [0, 1] by their definition.

It is possible to use the same similarity measure for the visual vocabulary constructed
using radius-based clustering. However, it has been shown [48] that a dissimilarity mea-
sure gives significantly better results. In a dissimilarity measure, the distance of every
proto-concept to a descriptor is used, instead of assigning the descriptor to the closest
cluster only. The distances to descriptors for every proto-concept are averaged. Where
in the similarity case ~Fi can be 0 if none of the descriptors are closest, in the dissimilarity
case the average distance to all descriptors is kept, which is more informative.

Therefore, a dissimilarity measure is used between the descriptors of an image and
the clusters to obtain a fixed-length feature vector ~F of length n (again n equals the
number of clusters):

~Fi =
1
m

m∑
j=1

dij (9)

with dij the Euclidian distance between the ith cluster and the jth descriptor of the
image.
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3.8 Supervised machine learning

We learn semantic concept detectors from feature vectors that are extracted from video
shots. The presence of a concept in a certain video shot is assumed to be binary: either
the concept is present in that shot, or it is not. Assuming that a dataset annotated with
concept presence is available, the dataset is divided into two classes: concept-present
and concept-not-present. This is a machine learning problem: given feature vectors and
corresponding class labels, learn a classifier that estimates the probability that an unseen
feature vector belongs to one of the classes. We discuss two different machine learning
algorithms: Support Vector Machines (SVM) and Fisher’s Linear Classifier.

Figure 14: Two linearly separable datasets with separating hyperplane. The separating
hyperplane on the right leaves the closest points at maximum distance. The thin lines
on the right identify the margin. Illustration taken from Webb [50].

SVM [50] is a linear discriminant analysis. The idea is as follows: find the ‘best’
separating hyperplane in feature space, which has a maximal margin to the data (see
figure 14). However, SVM has weight parameters for positive and negative instances
of a class which need to be tuned. Every concept needs to have its parameters tuned
individually.

Fisher’s Linear Classifier [50] is also a linear discriminant analysis. This classifier
seeks a linear combination of the feature space dimensions which separates the two
classes as much as possible. That is, we are seeking a direction along which the two
classes are best separated in some way. Hence, the Fisher’s criterion involves maximizing
the ratio of between-class variance to within-class variance. The advantage of Fisher’s
Linear Classifier over SVM is that it does not require parameter tuning.
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4 Concept detection framework

In this chapter, we will outline our concept detection framework. This framework pro-
vides a basis for implementing a concept detection system and evaluating the different
components within such a system.

The concept detection framework (see figure 15) operates on keyframe images from
video shots. We extract features from these keyframes to describe the shots. Feature
extraction pipelines are available for two types of features (see section 2.1.2): global
features and local features. Global features are descriptions computed over the entire
image area of the keyframe. Local features are an aggregation of descriptions of many
interest regions in the keyframe image.

The pipeline for extraction of global features is shown at the top-left in figure 15.
In the global feature extraction pipeline, image preprocessing steps are applied first to
the keyframe image. Then, we compute descriptors over the entire image area of the
(preprocessed) keyframe. Every descriptor yields a vector describing the keyframe. This
vector is used as the feature vector describing the video shot. Hence, the dimensionality
of global features is equal to the dimensionality of the descriptor.

The pipeline for the extraction of local features is shown at the top-right in figure 15.
In the local feature extraction pipeline, we first detect interest regions in the (prepro-
cessed) keyframe. Then, we compute descriptors for all detected interest regions. As
in the global pipeline, optionally the keyframe images are preprocessed. We allow for
different preprocessing steps for interest region detection and for region description.

With a variable number of interest regions per keyframe, the descriptors of these
regions need to be aggregated in order to obtain a fixed-length feature vector. The
alternative, a variable-length feature vector, only shifts the aggregation problem to a
different location within the framework. We perform aggregation by computing a simi-
larity measure between all descriptors for an image and a set of prototype descriptors.
These prototypes together form a visual vocabulary. We select the prototype descrip-
tors using a clustering algorithm. The vocabulary is fixed across different images. The
dimensionality of the feature vector is equal to the number of prototypes in the vocab-
ulary.

Both the global feature extraction pipeline and the interest region pipeline output
fixed-length feature vectors for video shots. The concept detector pipeline in figure 15
shows how we use these feature vectors to perform experiments. The video shots are
divided into a disjoint training and test set. A model for a concept ωj is learned from
the feature vectors of the training set and concept annotations of the ground truth. This
concept model is applied to the feature vectors from the test set. Based on the output
of the model application, all shots should be ordered by the likelihood that they contain
the concept. This ordered list is the shot ranking ρj for the concept ωj .

Using the ground truth for the test set and the shot ranking, we compute criteria that
evaluate how well the concept detector performed. For a proper evaluation, we should
use multiple concepts when comparing evaluation metrics of different instantiations of
the concept detection framework. We can investigate the effect of individual components
on concept detection performance by changing a single component at a time.

The applicability of our framework extends beyond the components in this thesis.
New interest region detectors, region descriptors, learning algorithms, etc. can easily be
plugged in. Furthermore, our framework can be extended to new types of features by
adding extra feature extraction pipelines.
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Figure 15: Concept detection framework. The framework consists of three pipeline.
The global feature pipeline extracts global features. The local feature pipeline extracts
features based on interest regions. The feature vectors resulting from feature extraction
form the input to the concept detector pipeline. We learn a concept model from the
feature vectors and a ground truth. Using the model we order unseen feature vectors by
the likelihood that they contain the concept. We compute evaluation criteria over the
resulting shot ranking.
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5 Concept detection system

In this chapter, details are provided on how our concept detection system is implemented.
In section 5.1, we discuss instantiations of the feature extraction pipelines. We then
describe the implementation of components within the feature extraction pipeline in
sections 5.2 through 5.4. In section 5.5, we describe the instantiation of the concept
detector pipeline. Finally, in section 5.6, we discuss how to combine multiple features
using feature fusion.

5.1 Feature extraction

Before feature extraction, we divide every video into camera shots. Camera shots are
uninterrupted recordings of a camera. A shot boundary detection [34] is assumed to be
available for all videos to be processed. Using these boundaries we can divide the video
into shots. We extract features for all shots in a video. However, within a single shot
there are many frames. For our features, only the most representative frame of a shot,
the keyframe, is used. How to extract the most representative frame from a shot is an
open issue, but often the middle frame of a shot can give reasonable results, avoiding
frames with transition effects. The keyframes available to us use the MPEG keyframe
closest to the middle frame of the shot [33]. Additionally, shots which are shorter than
two seconds are discarded. These very short shots tend to be detected during long scene
transitions and in commercials.

Having divided a video into shots and having reduced the shots to single keyframes,
we instantiate the feature extraction pipelines within our concept detection framework
(see figure 15 in chapter 4). For global features we instantiate the global feature extrac-
tion pipeline (see figure 16). For features based on interest regions we instantiate the
local feature extraction pipeline (see figure 17).

In the global feature pipeline, shown in figure 16, keyframe images form the input
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Figure 16: Pipeline for extraction of global features. A descriptor is computed over the
entire keyframe image area. This descriptor can be used as a feature vector directly.
Applying color constancy is an optional preprocessing step on the keyframe images.
This is an instantiation of the global feature pipeline from figure 15.
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to an optional preprocessing step: color constancy (section 3.3). This preprocessing
step yields an image which has been normalized against the color of the light source in
the image scene. Different descriptors can be computed over the entire image area of
the (preprocessed) keyframe. There are 9 descriptors available in our system for global
features. These descriptors will be discussed in section 5.3. Every descriptor yields a
vector describing the keyframe. This vector is used as the feature vector describing the
video shot. Hence, the dimensionality of global features is equal to the dimensionality
of the descriptor.

In figure 17, the instantiation of the local feature pipeline is shown. Before we detect
interest regions in the keyframe, we optionally preprocess the keyframe using color boost-
ing. We have two different interest region detectors: Harris-Laplace and ColorHarris-
Laplace. Harris-Laplace will be used without color boosting, while ColorHarris-Laplace
will always be used with color boosting. We will refer to the latter as Colorboosted
ColorHarris-Laplace. The detectors are discussed further in section 5.2. Descriptors are
computed for all detected interest regions. As in the global pipeline, optionally keyframe
images can be preprocessed using color constancy before descriptor computation. For
interest regions, we have implemented 10 descriptors in our system. With a variable
number of interest regions per keyframe, the descriptions of these regions need to be
aggregated in order to obtain a fixed-length feature vector. Aggregation is performed by
computing either a similarity measure or a dissimilarity measure between all descriptors
of an image and the visual vocabulary. The visual vocabulary is constructed using either
k-means clustering or radius-based clustering. Additional details on clustering and the
dissimilarity measure are given in section 5.4.

5.2 Detectors

The Harris-Laplace scale invariant point detection algorithm, that was discussed in
section 3.5.3, is given in figure 18.

The first part of the algorithm detects corners at multiple scales. The scales used
have a

√
2 multiplication factor between them. The cornerness for a point must exceed

threshold σthreshold to filter low maxima, which originate from noise or slightly curved
edges. This part of the algorithm has a worst-case runtime complexity of O(wh) with
w the width of the image and h the height of the image, i.e. the runtime depends on
the number of pixels.

The second part of the algorithm performs scale selection on all points from the first
part. At scales near the scale at which they were detected, the Laplacian-of-Gaussian
(equation 6) is computed. These scales are spaced 4

√
2 apart. Only the range up to the

previous/next possible detection scale is included. The scale at which the Laplacian-
of-Gaussian attains a local maximum is the characteristic scale of the point. If the
characteristic scale of the point is not in the limited range, then the point should have
been detected at a different scale. If there is no local maximum, then the point is
not scale invariant and hence rejected. For a point to be accepted, its maximal |LoG|
response should exceed threshold tlaplacian. This prevents points with a weak local
structure from being accepted. The worst-case runtime complexity of this part of the
algorithm is O(n), with n the number of candidate points2.

Based on the algorithm above, two scale invariant point detectors have been derived:
Harris-Laplace and Colorboosted ColorHarris-Laplace.

Harris-Laplace operates on the intensity information from the image only, e.g. it
does not use color information. The detector is described in section 3.5.3.

2We obtain this complexity under the assumption that the number of pixels that are involved in the
computation of the |LoG| are bounded by a constant. Since there is a maximum detection scale, the
size of the Laplacian-of-Gaussian kernel, and thus the number of pixels involved, is indeed limited.
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Figure 17: Pipeline for extraction of features based on interest regions. Descriptors are
computed for all interest regions detected in the keyframe image. Representative de-
scriptor prototypes are selected using a clustering algorithm. The dissimilarity between
the prototypes and the descriptors forms the feature vector. Applying color constancy
is an optional preprocessing step on the keyframe images. This is an instantiation of
the local feature pipeline from figure 15.
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function HarrisLaplaceDetector(image)
candidatePoints ← ∅
for scale in { 3

4

√
2, 1 1

2 , 1
1
2

√
2, 3, 3

√
2, 6, 6

√
2, 12} do

σI = scale
σD = 0.7125 * scale
cornerness ← Compute cornerness (equation 5) for all image pixels
points ← FindLocal2DMaxima(cornerness)
for all points p do

if cornerness(p) ≥ tharris then
candidatePoints ← candidatePoints ∪{(p, scale)}

end if
end for

end for
scaleInvariantPoints ← ∅
for point, detectionScale in candidatePoints do

scalesToCheck ← ScalesAround(detectionScale)
valuesLoG ← Compute LoG(point, σn) (equation 6) for all σn in scalesToCheck
if HasLocalMaximum(valuesLoG) then

response ← value ∈ valuesLoG corresponding to local maximum
characteristicScale ← scale ∈ scalesToCheck corresponding to local maximum
if response ≥ tlaplacian then

scaleInvariantPoints ← scaleInvariantPoints ∪ {(point, characteristicScale)}
end if

end if
end for

Figure 18: Harris-Laplace scale invariant point detection algorithm.
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Colorboosted ColorHarris-Laplace applies color boosting (section 3.5.4) to the keyframe
image before detecting interest regions. The detector is extended to use multiple chan-
nels as described in section 3.5.5. The color channels used in the detector are the R, G
and B channels of the RGB color space (section 3.2.1).

5.3 Region descriptors

The region descriptors used are described in section 3.6. In this section their implemen-
tation is described. The following descriptors are available in our system:

• RGB histogram (section 3.6.1, implementation see section 5.3.1)

• Transformed RGB histogram (section 3.6.2, implementation see section 5.3.2)

• Opponent histogram (section 3.6.1, implementation see section 5.3.3)

• Hue histogram (section 3.6.3, implementation see section 5.3.4)

• Color moments (section 3.6.4, implementation see section 5.3.5)

• Spatial color moments (section 3.6.4, implementation see section 5.3.6)

• Spatial color moments with normalized RGB (section 3.6.4, implementation see
section 5.3.7)

• Color moment invariants (section 3.6.4, implementation see section 5.3.8)

• Spatial color moment invariants (section 3.6.4, implementation see section 5.3.9)

• SIFT (section 3.6.5, implementation see section 5.3.10)

Descriptors can be computed over the complete keyframe (for global features) and
for interest regions (for local features). The keyframes have a size of 352 by 240 pixels.
To remove black borders 15 pixels are cropped on every side of the frame, leaving an
image of 322 by 210 pixels.

SIFT is the only descriptor which cannot be computed over the complete keyframe.
The implementation we use [28] is limited to circular or elliptical regions of limited size.
Without the source code available this descriptor could not be computed for the entire
rectangular image area.

In chapter 3 it has been shown that all our interest regions are defined by their
position and scale3. To achieve comparable descriptors for different scales, all regions
are resampled to a uniform square patch of size 60 by 60 pixels. The advantage of
using a uniform size is that it is not necessary to add scale invariance to the descriptors
explicitly: the resampling makes regions of different size comparable. The resampling
is proportional to the scale of the region: the circle with distance σ from the interest
point is at the same location in the 60 by 60 patch for all scales.

Now the implementation details of all descriptors will be briefly described.

5.3.1 RGB histogram

The RGB histogram is a combination of three 1D histograms based on the R, G and B
channels of the RGB color space. For each channel, 15 bins are equally spaced over the
value range [0..1]. As a result, this descriptor has 45 bins in total.

3Besides position and scale, orientation could also be a part of the definition of an interest region.
However, for rotationally invariant descriptors, the orientation of the region is not important. For SIFT,
which uses the orientation, we see orientation assignment as part of the descriptor computation process.
Therefore, it is not used in our definition of the interest region.
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5.3.2 Transformed RGB histogram

The transformed RGB histogram is a combination of three 1D histograms based on the
R, G and B channels of the RGB color space. However, the channels have been nor-
malized as described in section 3.6.2. This normalization makes the histogram invariant
to light intensity, color of the light source, shading and shadows.

Due to the normalization, the samples in each channel have a zero-mean and a
standard deviation of one. If the channels are normally distributed, then 98% of the
samples are expected to lie in the range [−2σ, 2σ]. While our data is not normally
distributed, most samples do lie within this range. We have applied normalization to
1000 randomly selected images from our dataset and have found that more than 99%
of the samples do lie within two standard deviations of the mean. So, as our histogram
intervals we have chosen to divide the range [−2σ, 2σ] into 15 equally sized bins. The
samples which fall outside this range (e.g. less than 1% of the pixels) are placed in the
upper or lower histogram bin, depending on the sign of the sample.

5.3.3 Opponent histogram

The opponent histogram is a combination of three 1D histograms based on the o1, o2 and
o3 channels of the opponent color space. There are two advantages of this descriptor over
RGB histograms. Firstly, the assumption of decorrelated channels (see section 3.6.1)
holds. Secondly, the light intensity is isolated in channel o3 and color information is
isolated in channels o1 and o2.

The histogram intervals for the opponent color space have ranges different from the
RGB model. Channel o1 and o2 have bins spaced equally over the range [−1

2 ,
1
2 ]. Any

samples outside this range are placed in the outer bins. Channel o3 has its bins spaced
equally over the range [0,

√
3]. It is not possible for samples to fall outside this range.

5.3.4 Hue histogram

The hue histogram is a 1D histogram based on the hue channel of the HSV color space.
To address instability of the hue in dark and/or grey areas, the hue samples are weighed
by the saturation. This is different from other histograms where the weight of each
sample is equal to 1. The hue channel is divided into 37 equally spaced intervals.

Our implementation corresponds to the hue histogram descriptor introduced by Van
de Weijer [47]. That descriptor is specifically designed for interest regions. When applied
to interest regions, each hue sample is also weighed by its distance to the center of the
interest region. Samples near the center are given a higher weight than those near the
boundary of the region. The weighing is achieved using a Gaussian weighing mask.
Since the Gaussian is rotationally symmetric, it ensures rotational invariance for the
descriptor.

It does not make sense to use the Gaussian weighing mask when the hue histogram
is applied to an area which is not an interest region. For example, when applied to a
whole image frame, which is 322 by 210, the weighing mask will neglect the borders of
the image. We leave out the Gaussian weighing step at the global level, as all other
descriptors do not use this either.

5.3.5 Color moments

Generalized color moments can be used to characterize the color distribution in an image
(see section 3.6.4). When using generalized color moments up to degree 2 and order 0,
there are 10 color moments: M000

00 , M100
00 , M010

00 , M001
00 , M200

00 , M110
00 , M020

00 , M011
00 , M002

00

and M101
00 . The moment M000

00 is not included, because it is always equal to 1. Hence
the color moment descriptor has 9 useful dimensions.
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5.3.6 Spatial color moments

The spatial color moment descriptor uses all generalized color moments (section 3.6.4)
up to degree 2 and order 1: it includes a spatial component over ordinary color moments.
This leads to three possible combinations for the order: Mabc

00 ,Mabc
10 and Mabc

01 . Com-
bined with the 9 useful combinations for degrees, the spatial color moment descriptor
has 27 dimensions.

5.3.7 Spatial color moments with normalized RGB

Spatial color moments (section 3.6.4) do not have invariance properties; they merely de-
scribe the (spatial) color distribution. Invariance to light intensity changes can be added
by converting the image data to normalized RGB before calculating descriptors. As the
third channel of normalized RGB is redundant, color moments over only 2 channels are
needed. This leads to 15 color moments for the descriptor.

5.3.8 Color moment invariants

Color moment invariants can be constructed from generalized color moments (see sec-
tion 3.6.4). We will use the 3-band invariants with order 0 from Mindru et al [29] as
our color moment invariants. To be comparable, we also use the C̃02 invariants. This
gives a total of 9 color moment invariants.

5.3.9 Spatial color moment invariants

We will use all 3-band invariants from Mindru et al [29] as our color moment invariants.
Over the normal color moment invariants, this yields an additional 15 invariants. This
gives a total of 24 color moment invariants.

5.3.10 SIFT

To compute SIFT descriptors (see section 3.6.5), we use the implementation by Miko-
lajczyk [25]. This implementation was used for the evaluation of region descriptors in
[28]. It corresponds to the description of the SIFT algorithm in [21].

5.4 Clustering

In section 3.7 two algorithms are given for constructing a visual vocabulary of repre-
sentative descriptors: the k-means clustering algorithm and the radius-based clustering
algorithm. The implementations are as follows.

5.4.1 K-means clustering

K-means is a very well-known clustering algorithm [50]. It is a simple, iterative cluster-
ing approach. The number of clusters n should be given beforehand. Initially all cluster
centers are initialized by picking points randomly from the dataset. For every point
from the dataset the distance to each cluster center is calculated. The point is assigned
to the cluster whose center is closest. Once all points have been assigned, cluster centers
are updated by taking the average of all points in the cluster. This procedure loops until
the cluster centers no longer change or a fixed number of iterations has passed.

For k-means clustering we use the implementation available in Matlab [23]. The
worst-case runtime complexity of a single k-means iteration is O(kn) with k the number
of clusters and n the number of data points.
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clusters ← ∅
while there are points outside the radius of existing clusters do

smallestMaxDistance ← 0
smallestMaxDistancePoint ← ~0
for all points p do

maxDistance ← 0
for all points q with p 6= q and q not within radius of existing clusters do

d ← EuclidianDistance(p, q)
if d > maxDistance then

maxDistance ← d
end if

end for
if maxDistance < smallestMaxDistance then

smallestMaxDistance ← maxDistance
smallestMaxDistancePoint ← p

end if
end for
clusters ← clusters ∪{smallestMaxDistancePoint}

end while
realClusters ← ∅
for all clusters c do

if NumberOfPointsInsideRadius(points, c, radius) ≥ minimumCoverage then
realClusters ← realClusters ∪{c}

end if
end for

Figure 19: Radius-based clustering algorithm.

5.4.2 Radius-based clustering

Radius-based clustering assigns all data points within a fixed radius of similarity r
to one cluster, where r is a parameter. Given an instantiation of the r parameter, the
algorithm in figure 19 is run. It selects the point with the lowest maximal distance to
all other points as a candidate cluster. All points within distance r of this point are
then discarded in the search for more clusters, since these points fall within the selected
cluster. After all data points fall within one of the candidate clusters, a pruning step is
performed. Only clusters which have a minimum number of points within their radius,
minimumCoverage, are retained. If a run of the algorithm for radius r does not yield
enough clusters, the algorithm is rerun using a smaller radius.

For the radius-based clustering, a C++ implementation by Jan van Gemert (UvA)
has been integrated into our system. A single run has a worst-case runtime complexity
of O(n3) with n the number of data points. An example worst case is when the distance
between all points is greater than r. This results in all points becoming candidate
clusters. In practice, the worst case does not occur if r is large enough. An initial
estimate of the radius r can be made based on the smallestMaxDistance from the first
iteration of the while loop.

5.4.3 Visual vocabulary

For the construction of the visual vocabulary, two different methods are considered. The
first method searches for clusters in the descriptor space of 1000 images from the dataset.
Due to limitations of the k-means implementation, we have to constrain our search to
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Figure 20: Pipeline for learning a concept detector from feature vectors and a ground
truth for the concept. This is an instantiation of the concept detector pipeline from
figure 15.

195 clusters. The second method searches for clusters on a per-concept basis. For every
concept clustering is performed on up to 1000 images belonging to the concept. For
all concepts, we search for at least 10 clusters. We will use the 39 TRECVID concepts
(see section 6.2). Depending on the descriptor and the data clustered on, per-concept
clustering has a visual vocabulary size of 400 to 425 clusters.

5.4.4 Similarity measures

Besides selection of the clustering algorithm (k-means versus radius-based clustering)
and the clustering method (normal clustering or per-concept clustering), we can also
select the similarity measure to use. In section 3.7.2, the similarity measure (equation 8)
and the dissimilarity measure (equation 9) are presented. In our experiments we will
compare the different options to chose from (see section 7.2).

5.5 Concept detector pipeline

The concept detector pipeline of our framework (see chapter 4) takes feature vectors
together with a ground truth annotation as input. Figure 20 shows the instantiation of
the concept detector pipeline.

The concept model can be learned using either SVM or Fisher’s Linear Classifier
(see section 3.8). Parameters of the SVM algorithm are chosen by performing 3-fold
cross-validation over 126 different weight combinations. Fisher’s Linear Classifier does
not require parameter tuning. In terms of computation SVM takes more than a hundred
times longer than Fisher’s Linear Classifier.
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5.6 Feature fusion

The concept detector pipeline in our concept detection framework can operate on arbi-
trary feature vectors. When we want to combine multiple features, it is straightforward
to concatenate the feature vectors of different features into one long feature vector and
feed this into the concept detector pipeline. We refer to this kind of fusion as feature
fusion. The advantage of this fusion method is that the machine learning algorithm im-
plicitly learns which elements of the feature vector are important. An alternative fusion
method, descriptor-level fusion, does not have this advantage. Descriptor-level fusion
concatenates multiple descriptors of the same region. When combining different region
descriptors, we need to introduce weighting parameters to adjust for different scales of
the descriptor spaces. Obtaining good or optimal weights is a non-trivial problem which
lies beyond the scope of this thesis. Therefore, we will not use descriptor fusion. A third
fusion method operates on the level of the shot ranking. Shot ranking fusion combines
multiple ordered lists of shots, i.e. the shot rankings. The shots are reranked depending
on their position in the lists. Because we focus on features and feature extraction, the
fusion of shot rankings is beyond the scope of this thesis.
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6 Experimental setup

In this chapter we sketch the experimental setup to evaluate the components of our
concept detection framework, as detailed in chapter 4, using the implementation sketched
in chapter 5.

6.1 Experiments

In experiment 1, we consider two different machine learning algorithms in the concept
detector pipeline. In experiment 2, we compare methods for building and using a visual
vocabulary in the feature extraction pipeline. In experiment 3, we compare local and
global features using different descriptors. In experiment 4, we investigate the effect of
color constancy on the performance of different descriptors. Finally, in experiment 5,
we combine our features using feature fusion. In figure 21, we show an overview of the
position of our experiments within the concept detection framework.

6.2 Mediamill Challenge

Repeatable experiments, using common datasets, are very important for research fields
to progress further. As discussed in section 2.2.1, the Mediamill Challenge by Snoek
et al [42] provides an annotated video dataset, based on the training set of TRECVID
2005. The annotation is referred to as a ground truth: a video shot contains a semantic
concept if and only if it has been annotated as such. However, an annotation is never
perfect, as mistakes are made during annotation.

Snoek et al have defined five repeatable multimodal experiments based on this com-
mon dataset. They decompose automatic semantic concept detection into a number of
components, for which they provide a standard implementation. This provides an en-
vironment to measure which factors affect performance most. It allows for an in-depth
understanding of the problem at hand. Since our framework uses visual information
only, we use only the first of the five experiments:

Given a visual feature vector, ~vi, learn for each of the semantic concepts ωj a ranked
list ρj, where feature vectors are defined for shots i.

The TRECVID 2005 training set [33] of 85 hours of video is divided into a Challenge
training set (70% of the data or 30993 shots) and a Challenge test set (30% of the data
or 12914 shots). In figure 2 in section 2.2.1, an impression of the dataset was given.
The dataset consists of television news from November 2004 broadcasted on several TV
channels in different languages. In table 4 an overview of the broadcasts is given.

The Mediamill Challenge is defined for 101 concepts. However, in TRECVID 2006
a subset of 39 concepts are used. As the results from this thesis have been included in
the Mediamill semantic video search engine for TRECVID 2006 (see appendix A), we
will only focus on the 39 concepts that are part of a TRECVID 2006 submission.

The learning step in the above experiments uses the training set for learning. The
learned concept model is used to rank shots from the test set. Thus, both the Challenge
baseline and our system output a ranked list of shots ρj for a semantic concept ωj .

6.3 Evaluation criteria

For the evaluation of ranked lists many metrics exist. Important notions are precision
and recall. Precision is defined as the percentage of items returned that are correct:

precision =
|R ∩ ρ|
|ρ|

with R the set of relevant items, ρ the set of items returned and |X| the size of set X.
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Figure 21: The concept detection framework from chapter 4 where the experiments
performed in this thesis have been indicated.
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Language Episodes Source Program Length
Arabic 7 LBC LBC Nahar 6h 46min
Arabic 5 LBC LBC News (1pm) 2h 5min
Arabic 14 LBC LBC News (8pm) 13h 34min
Chinese 13 CCTV4 Daily News 12h 19min
Chinese 11 CCTV4 News3 5h 5min
Chinese 10 NTDTV NTD News (12pm) 4h 42min
Chinese 9 NTDTV NTD News (7pm) 4h 15min
English 11 CNN Aaron Brown 10h 42min
English 9 CNN Live From 4h 11min
English 15 NBC NBC Philadelphia 7h 5min
English 7 NBC Nightly News 3h 18min
English 11 MSNBC MSNBC News (11am) 5h 12min
English 15 MSNBC MSNBC News (1pm) 7h 3min
Total 137 86h 17min

Table 4: Overview of the news broadcasts present in the TRECVID 2005 training set.
In literature the total size of this dataset is referred to as ‘about 85 hours’.

Recall is the fraction of all relevant material that is returned:

recall =
|R ∩ ρ|
|R|

From these definitions it is obvious that one wants both high precision and recall
for retrieval systems. However, there is a trade-off between precision and recall. By
returning more results, one can increase the fraction of all correct material retrieved,
but this will probably lower precision by adding extra incorrect results. The other way
around, by returning only results which are almost certainly correct, the precision can
be increased, but this will lower the fraction of all correct material retrieved. This trade-
off is visualized for two systems in the precision-recall curve in figure 22. The question
arises which of the two systems is better. Hence, a measure is needed that optimizes
both precision and recall. One such measure is average precision.

Figure 22: Precision-Recall curve sketch. A retrieval system can return multiple re-
sults with different precision/recall combinations. Together these form a precision-recall
curve. Here the curves of two retrieval systems (A and B) are sketched. The average
precision metric is proportional to the area under the precision-recall curve. The average
precision of system A is higher than the average precision of system B.
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The average precision is a single-valued measure that is proportional to the area
under a precision-recall curve. This value is the average of the precision over all shots
judged relevant. Let ρk = {l1, l2, ..., lk} be the ranked list of shots from answer set A4.
At any given rank k let |R∩ρk| be the number of relevant shots in the top k of ρ, where
R is the set of relevant shots and |X| is the size of set X. Average precision, AP , is
then defined as:

AP (ρ) =
1
|R|

|A|∑
k=1

|R ∩ ρk|
k

ψ(lk)

with indicator function ψ(lk) = 1 if lk ∈ R and 0 otherwise. |A| is the size of the answer
set, e.g. the number of items present in the ranking. As can be seen from the k in the
denominator, it is very important to have correct results for highly ranked shots.

From the precision-recall curves shown in figure 22, we observe that system A will
have a higher average precision than system B, because the area under curve A is larger
than the area under curve B.

Average precision is the standard in TRECVID evaluations for determining the ac-
curacy of ranked concept detection results. We will also adopt this metric for our exper-
iments. When performing experiments over multiple concepts, the average precisions
of the individual concepts can be aggregated. This aggregation is called mean average
precision (MAP). MAP is calculated by taking the mean of the average precisions.

4For our experiments, the answer set can contain shots from the test set only.
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7 Results

In this chapter, we evaluate the components of our concept detection system from chap-
ter 5. The system is an implementation of our concept detection framework from chap-
ter 4. The experimental setup is described in chapter 6. We detect the 39 semantic
concepts as listed in section 2.2. Concept detector performance is measured using aver-
age precision, which was discussed in section 6.3.

7.1 Machine learning algorithms

We plot the concept detection results using SVM and Fisher’s Linear Classifier as ma-
chine learning algorithms in figure 23. For many concepts, the differences between the
algorithms are small, but most often the difference is in favor of SVM. Especially the
SVM algorithm performs substantially better for concepts which occur in a limited num-
ber of styles, such as computer-generated graphics (maps, weather reports, charts) and
sports and animal. Computer-generated graphics tend to have a consistent look within
a single television channel, therefore the number of styles is limited. A limited number
of sports are broadcast and sport events within the same sport look similar. Many ani-
mals present in the dataset occur within commercials, which are repeated many times.
For three concepts, people, outdoor and entertainment, the difference is clearly to the
advantage of Fisher’s Linear Classifier. These concepts are very open-ended: there are
always new people, outdoor scenes and entertainment shows which look very different
from existing occurrences. We have observed a similar pattern using a different feature
(Harris-Laplace detector with hue histogram descriptor) as well.

0.0 0.2 0.4 0.6 0.8 1.0
AP

MAP

prisoner
bus

police_security
corporate_leader

truck
boat

natural_disaster
snow
court

aircraft
explosion

office
screen

mountain
animal

waterbody
desert

road
vegetation

urban
charts

flag_usa
military

sports
car

meeting
government_leader

entertainment
people_marching

building
weather

maps
walking_running

crowd
sky

studio
outdoor

face
people

co
n

ce
p

ts

Fisher versus SVM on Challenge baseline feature

Fisher’s Linear Classifier
SVM

Figure 23: Performance of Fisher’s Linear Classifier and SVM machine learning algo-
rithms on visual features from the Mediamill Challenge. Concepts are ordered by their
performance using Fisher’s Linear Classifier. This order will be used throughout this
chapter. At the bottom the MAP over all concepts is shown.
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Given that the overall performance difference is less than 5%, the usage of SVM over
Fisher’s Linear Classifier does not warrant the hundredfold increase in computation
time. Hence, in our experiments, we employ Fisher’s Linear Classifier. In the remainder
of this chapter, we use the performance of the visual features of the Mediamill Challenge
using Fisher’s Linear Classifier as the baseline performance.

7.2 Visual vocabulary

In section 5.4, methods for constructing and using a visual vocabulary for local features
are discussed. There are three different choices to be made:

• Clustering algorithm (k-means clustering or radius-based clustering)

• Usage of per-concept clustering

• Similarity measure (equation 8) or dissimilarity measure (equation 9)

In figure 24, an overview of the overall performance for all possible combinations
is given. The results are obtained using the Harris-Laplace interest region detector
and the SIFT descriptor. We observe that the dissimilarity measure outperforms the
similarity measure, independent of the other choices made. The similarity measure
suffers from data sparseness: with on average 250 descriptors, there will be clusters with
no descriptors assigned to them. The dissimilarity measure, which averages the distance
to all descriptors, does not have this problem. Because of the clear advantage of the
dissimilarity measure, we leave out the results of the similarity measure in the more
detailed plot in figure 25.

Using clustering on a per-concept basis improves the performance over normal clus-
tering. This can be partially explained by the fewer number of clusters for the normal
clustering (195 versus approximately 400), but this disadvantage stems from memory
limitations of the k-means clustering algorithm implementation. In the detailed plot,
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Figure 24: Performance overview of visual vocabulary construction methods (k-means
versus radius-based clustering, usage of per-concept clustering) and usage methods (sim-
ilarity measure versus dissimilarity measure). Results obtained using Harris-Laplace
interest region detector and SIFT descriptor.
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Figure 25: Detail plot of figure 24 results. Only the baseline and results which use the
dissimilarity measure are shown.

it can be observed that, if the choice of clustering algorithm (k-means or radius-based)
is already made, it is always advantageous to use per-concept clustering (except for an
insignificant difference for the concepts office and truck). Thus, per-concept clustering
gives better performance. In addition, it can also be extended to include many more
concepts, where normal clustering already encounters scalability problems.

Given that the dissimilarity measure and per-concept clustering are the best choices,
we only need to select the best clustering algorithm. In terms of overall performance,
radius-based clustering is better than k-means clustering. Looking at individual con-
cepts, radius-based clustering is almost always better. There a significant difference in
favor of k-means for sports and court only.

In conclusion, when using visual vocabularies, radius-based clustering on a per-
concept basis with a dissimilarity measure outperforms the other possible choices. There-
fore, in the remainder of this chapter, we will use this method for local features.

7.3 Global and local features

In section 5.1, we distinguished two feature extraction methods: global feature extrac-
tion and local feature extraction. Global features are descriptions computed over the
entire image area. Local features are an aggregation of descriptions of many interest
regions. We compare two interest region detectors (see section 5.2): Harris-Laplace and
Colorboosted ColorHarris-Laplace. We also compare the above when combined with
different region descriptors (see section 5.3).

In the results from figure 26, we observe that local features are significantly better
than global features. However, given that the dimensionality of global features is about
8 times lower, they perform quite well. Between the two types of local features (Harris-
Laplace and Colorboosted ColorHarris-Laplace), there is no clear difference. On a per-
concept basis, we observe that for certain concepts Harris-Laplace is better, for others
Colorboosted ColorHarris-Laplace. For which concepts the detector is best also depends
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Figure 26: Performance results for global and local features paired with different descrip-
tors. For local features there are two separate interest region detectors: Harris-Laplace
and Colorboosted ColorHarris-Laplace.

on the descriptor used. As an example, for the concept sky, Colorboosted ColorHarris-
Laplace is better in combination with the opponent histogram, the hue histogram and
spatial color moments, but not in combination with the transformed RGB histogram.
So, when the computational resources are available, we should use both types of local
features or select the best feature on a per-concept basis.

In figure 26, we can also compare the different descriptors. For global features, spa-
tial color moments perform best; followed by the opponent histogram and the RGB
histogram. For local features, the SIFT descriptor and the opponent histogram per-
form best. They are closely followed by the transformed RGB histogram and the RGB
histogram. Slightly farther behind are spatial color moments.

The addition of spatial information in spatial color moments improves results over
color moments. However, computing spatial color moments on normalized RGB reduces
overall performance. Apparently the properties against which additional invariance
is achieved, i.e. light intensity, shadows, shading and viewing geometry, discriminate
certain video shots better. The same argument can be made for the color moment
invariants, which are invariant to light intensity and illumination color, and the hue
descriptor, which does not contain any intensity information.

In conclusion, the best features to use are local features with the SIFT descriptor
or the opponent histogram descriptor. However, these features do not exceed baseline
performance. In section 7.5, we will combine different features, which does improve over
the baseline.
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7.4 Color constancy

In our feature extraction pipeline (section 5.1), we can choose to apply color constancy
before descriptor computation. Results with and without color constancy are shown in
figure 27.

The addition of color constancy does not change overall performance for descriptors
which are already color constant: the transformed RGB histogram, color moment in-
variants and spatial color moment invariants are all unchanged. The SIFT descriptor
does not change either. Color constancy is not expected to affect performance for a
descriptor which uses intensity information only. However, for all other descriptors, the
overall performance drops. The rationale for including color constancy is that it should
increase performance by providing invariance to the illumination color. So, it is better
not to use color constancy, because it decreases performance.

When applying color constancy, several shots from a commercial are mistakenly
ranked very high. Due to the artificial colors found in the commercial, the estimation
of the illumination color fails. At the top in figure 28, one such keyframe and its color
constant version from the concept maps are shown. After normalizing with the wrong
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Figure 27: Performance results of features with and without color constancy. HL is short-
hand for Harris-Laplace. CBCHL is shorthand for Colorboosted ColorHarris-Laplace.
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Figure 28: On the left, two keyframes from shots which are highly ranked when using
color constancy are displayed. On the right, color constant versions of the keyframes
are displayed.

illumination color, the keyframe contains the same green typically found in maps. In
other cases, the illumination has been estimated correctly, but the reduced discrim-
inability makes the keyframe in the color constant keyframe similar to those that occur
frequently for this concept. An example is shown at the bottom in figure 28: an outdoor
music event is retrieved for the concept studio, which has a blueish background that
is very similar to backgrounds that frequently occur for this concept. Especially for
the concepts studio, maps, weather and entertainment there are significant decreases in
performance due to color constancy. For the other concepts there are only small changes
in performance, both positive and negative. We will refrain from using color constancy
in the remainder of our experiments.

7.5 Feature fusion

In section 7.3, we observed that our features individually do not exceed baseline perfor-
mance. However, we noted that the best feature to use differs on a per-concept basis.
When we use feature fusion (see section 5.6), we can let the machine learning algorithm
building the concept detector implicitly learn which elements of the feature vector to
use.

We have tried all combinations of any two features from figure 26. In figure 29
results of a subset of all combinations is shown. We observe that performance of Harris-
Laplace with the SIFT descriptor combined with the baseline gives the best performance.
The best combinations which include only our features contain Harris-Laplace with the
SIFT descriptor. Therefore, only combinations involving this feature and the baseline
are shown in figure 29. The best combination which does not include the baseline is
Harris-Laplace with SIFT descriptor combined with Colorboosted ColorHarris-Laplace.

When we compare the performance of individual features to fused features, we ob-
serve that good individual features fuse well. However, we note that features should be
sufficiently orthogonal to provide substantial gains. As an extreme example of this, we
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fuse Harris-Laplace with SIFT with itself. For this combination performance is lower
than Harris-Laplace with SIFT only. Another example is Harris-Laplace with SIFT
and Colorboosted ColorHarris-Laplace with SIFT: these features do not complement
each other. Fusion with global spatial color moments outperforms certain local fea-
tures. However, we should remember that the feature fused with already contains local
information.

In conclusion, the combination of features through feature-level fusion provides sig-
nificant performance improvements. Features that perform well on their own are good
candidates for fusion, as long as they are orthogonal.
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Figure 29: Performance results of feature-level fusion. Results without fusion are equal
to those in figure 26. Fusion is performed with either Harris-Laplace with SIFT de-
scriptor or with the Challenge baseline features. HL is shorthand for Harris-Laplace.
CBCHL is shorthand for Colorboosted ColorHarris-Laplace.
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8 Conclusions

In this thesis, we have developed a concept detection framework for large-scale evalu-
ation of visual features. Within this framework we have provided pipelines for global
features and local features based on interest regions. We have focused on including color
information in interest region detection and region description. After extensive exper-
iments on 85 hours of video data we see our hypothesis, namely: automated concept
detection using interest region features benefits from the addition of color information,
confirmed.

Specifically our experiments revealed that local features based on interest regions
outperform global features. However, there is no single feature which is best for all
concepts: the best feature depends on the concept. Overall, the intensity-based SIFT
descriptor and the opponent histogram descriptor are the best local descriptors. For
global features, spatial color moments perform best. Hence, when building a concept
detection system, one should use multiple ‘good’ features. Instead of using multiple
features, one could also choose to select features on a per-concept basis. This could be
done using cross-validation, for example.

In our feature fusion experiment, a combination of SIFT features and our color
features significantly improves over the baseline set by the Mediamill Challenge. Feature-
level fusion is an attractive way of combining features which are sufficiently orthogonal.
It would be interesting to see how many features can be combined before scalability
issues are encountered. Another interesting approach would be to perform fusion of
shot rankings, which potentially scales better than feature fusion.

For learning concept detectors, the performance increase of using SVM over Fisher’s
Linear Classifier is modest when compared to the hundredfold increase in computational
effort. Only when the computational resources are unconstrained, SVM should be used.

The method for the construction of a visual vocabulary for aggregation of interest
regions into a feature vector is of significant influence on concept detector performance.
Radius-based clustering selects better clusters than k-means clustering. Clustering on
a per-concept basis yields better vocabularies than one-shot clustering. When we ap-
ply a visual vocabulary, the default similarity measure from k-means suffers from data
sparseness. A dissimilarity measure gives significant improvements. In the future, we
aim to investigate if there is an optimal visual vocabulary size which maximizes concept
detector performance.

Our color constancy method is not robust to the artificial colors found in commer-
cials. However, given that commercials purposefully contain unnatural color distribu-
tions, the assumptions made by color constancy methods in general will not hold. This
can be solved by either filtering non-natural color distributions, or by not applying color
constancy in the news video domain.

Overall, we have improved automatic semantic concept detection by combining state-
of-the-art intensity features with color features. The improvement is even larger when
we combine our features with the baseline. Further work can be done on extending the
set of well-performing, orthogonal features. These features can easily be integrated in
our concept detection framework.
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A TRECVID Participation

The features from this thesis have been included in the Mediamill TRECVID 2006 sys-
tem. At submission time, the SIFT descriptor and the hue descriptor from this thesis
were ready for use. We evaluated performance of these descriptors on the Mediamill
Challenge using the Harris-Laplace detector, the Colorboosted ColorHarris-Laplace de-
tector and a combination of the two detectors. This combination of the two detectors
uses the interest regions of both. We also considered the feature fusion (section 5.6) of
the hue and SIFT descriptor. Overall the 9 features listed in table 5 have been tested.

Detector Descriptor Used in run
Harris-Laplace SIFT yes
Harris-Laplace Hue no
Harris-Laplace Hue+SIFT yes
Colorboosted ColorHarris-Laplace SIFT yes
Colorboosted ColorHarris-Laplace Hue yes
Colorboosted ColorHarris-Laplace Hue+SIFT no
Harris-Laplace and Boosted ColorHarris-Laplace SIFT yes
Harris-Laplace and Boosted ColorHarris-Laplace Hue no
Harris-Laplace and Boosted ColorHarris-Laplace Hue+SIFT no

Table 5: Features from this thesis that have been considered for inclusion in the
TRECVID participation. The right-most column lists whether the feature was used
in the submission.

Based on an experiment with Challenge data, we selected the best combination of
features using shot-ranking fusion. The best combination is a subset of 5 out of the
9 features. This combination has been submitted as my run. A combination of my
features with Gabor features and Weibull features5 has been submitted as a run as well.

We plot the results of all TRECVID submissions in figure 30. We achieved the best
performance of all TRECVID 2006 submissions for the concepts charts and flag USA
with the Mediamill run which includes my features. From all runs submitted by the
Mediamill team, the run with my features only achieved the best performance for the
concept animal.

Additional details on the shot-ranking fusion and the runs can be found in the
Mediamill TRECVID paper [40]. The features from this thesis have also been used in
the Mediamill semantic video search engine [41].

5Weibull features form the baseline in the Mediamill Challenge.
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Figure 30: Results of concept detection task at TRECVID 2006. Twenty concepts have
been evaluated. The run using my features and the Mediamill run which includes my
features have been marked. Results of other runs have been indicated by dots.
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